The purpose of this work was to evaluate the effect of three commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy. Experiments were made at 37.0 +/- 0.5 degrees C in a conventional three-compartment double wall glass cell containing commercial mouthwashes. Three mouthwashes with different active ingredients were tested: (I) 0.05% sodium fluoride + 0.03% triclosan; (II) 0.5 g/l cetylpyridinium chloride + 0.05% sodium fluoride; (III) 0.12% chlorohexidine digluconate. The assessment of the individual effect of active ingredients was studied by using 0.05% sodium fluoride. Commercially pure titanium (CP Ti) was used as control. Microstructures from Ti-10Mo experimental alloy and CP Ti were also evaluated using optical microscopy. Ti-10Mo as-cast alloy shows the typical rapidly cooled dendrites microstructure (beta phase) while CP Ti has exhibited a metastable martensitic microstructure. Electrochemical behavior of dental materials here studied was more affected by mouthwash type than by Ti alloy composition or microstructure. In both alloys passivation phenomenon was observed. This process may be mainly related to Ti oxides or other Ti species present in spontaneously formed film. Small differences in passive current densities values may be connected with changes in film porosity and thickness. Protective characteristics of this passive film are lower in 0.05% sodium fluoride + 0.03% triclosan mouthwash than in the other two mouthwashes tested.
Ti15Zr15Mo (TMZ alloy) has been studied in recent years for biomedical applications, mainly due to phase beta formation. From the surface modification, it is possible to associate the volume and surface properties with a better biomedical response. This study aimed to evaluate the possibility of using anodization to obtain TiO2 nanotubes due to the presence of valve-type metal (Zr) in their composition. X-ray photoelectron spectroscopy (XPS) was performed to determine the surface chemical composition in both after-processing conditions (passive layer) and after-processing plus anodization (TiO2 nanotube growth). The anodization resulted in nanotubes with diameters and thicknesses of 126 ± 35 and 1294 ± 193 nm, respectively, and predominated anatase phase. Compared to the passive layer of titanium, which is less than ~10 nm, the oxide layer formed was continuous and thicker. High-resolution spectra revealed that the oxide layer of the element alloys contained different oxidation states. The major phase in all depths for the nanotube samples was TiO2. While the stable form of each oxide was found to predominate on the surface, the inner part of the oxide layer consisted of suboxides and metallic forms. This composition included different oxidation states of the substrate elements Ti, Zr, and Mo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.