In this work, we assess the possible reasons for the differences observed in open circuit voltage (VOC) in mixed cation perovskite solar cells when comparing four different hole transport materials (HTMs), namely TAE-1, TAE-3, TAE-4 and spiro-OMeTAD.
Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale. Our results demonstrate a three-layer stratification of the blend: a film of C8-BTBT of few molecular layers with crystalline order sandwiched between a PS-rich layer at the bottom (a few nm thick) acting as a passivating dielectric layer and a PS-rich skin layer on the top (∼1 nm) conferring stability to the devices. Kelvin probe force microscopy (KPFM) measurements performed in operating organic field-effect transistors (OFETs) reveal that the devices are strongly contact-limited and suggest contact doping as a route for device optimization. By excluding the effect of the contacts, field-effect mobility values in the channel as high as 10 cm V s are obtained. Our findings, obtained via a combination of FFM and KPFM, provide a satisfactory explanation of the different electrical performances of the OFETs as a function of the blend composition ratio and by doping the contacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.