Amyloid-β (Aβ) peptides, found in Alzheimer's disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either β-or γ-secretase, enzymes required for production of Aβ from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.TBI is the leading cause of mortality and disability among young individuals in developed countries, and globally the incidence of TBI is rising sharply 1 . TBI is a disease process, with an initial injury that induces biochemical and cellular changes that contribute to continuing neuronal damage and death over time. This continuing damage is known as secondary injury, and multiple apoptotic and inflammatory pathways are activated as part of this process (for reviews, see refs. 2,3 ). TBI is a major risk factor for the development of Alzheimer's disease 4,5 , and post-mortem studies show that 30% of TBI fatalities have Aβ deposits 6,7 . Remarkably, these deposits may occur less than 1 d after injury 8 . Not only does Aβ accumulate after TBI 9,10 , but also do the necessary APP enzymes responsible for Aβ production: β-APPcleaving enzyme-1 (BACE1) and presenilin-1, a γ-secretase complex protein [11][12][13][14] . Although the role of the APP secretases in secondary injury is unknown, multiple lines of evidence show that Aβ can cause cell death, activate inflammatory pathways [15][16][17][18] and prime proapoptotic pathways for activation by other insults 19 . The APP secretases may also be directly involved in secondary injury, as over-expressed BACE1 alone has been shown to cause neuronal cell loss in the absence of Aβ accumulation 20 . These facts make the APP secretases a potential therapeutic target for TBI.In our initial experiments, we characterized the TBI-induced protein changes in a nontransgenic mouse. We performed TBI by controlled cortical impact (CCI) of the left parietal cortex. This model induces both necrotic and apoptotic cell death, causing brain lesion and the development of behavioral deficits 21 . It has recently been reported that interstitial fluid Aβ concentrations correlate with neurological function in the injured human brain, with Aβ accumulating as neurological function improved in the days after trauma 22 . Exposure to experimental TBI resulted in accumulation of endogenous mouse Aβ x-40 peptide in the ipsilateral cortex within 1 d (Fig. 1a). Aβ levels increased by almost 120% at 3 d after injury before normalizing by 7 d (Fig. 1a) NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptBace1 and presenilin-1 (Fig. 1b), as has been previously reported in other animal models and humans 9-14 . Soluble APP-α, which is purported to be neuroprotective 23 , was also increased after injury. Functionally, this model of TBI causes deficits in fine motor coordination (beam walk test, Supplementary Fig. 1a online) in the absence of gross motor def...
Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the a7 nicotinic acetylcholine receptor (a7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up-or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30-300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3-3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 ml) or ESBA (10 mM, 10 ml), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 mM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.
Levels of kynurenic acid (KYNA), an endogenous product of tryptophan degradation, are elevated in the brain and cerebrospinal fluid of individuals with schizophrenia (SZ). This increase has been implicated in the cognitive dysfunctions seen in the disease since KYNA is an antagonist of the α7 nicotinic acetylcholine receptor and the NMDA receptor, both of which are critically involved in cognitive processes and in a defining neurodevelopmental period in the pathophysiology of SZ. We tested the hypothesis that early developmental increases in brain KYNA synthesis might cause biochemical and functional impairments in adulthood. To this end, we stimulated KYNA formation by adding the KYNA precursor kynurenine (100 mg/day) to the chow fed to rat dams from gestational day 15 to postnatal day 21 (PD 21). This treatment raised brain KYNA levels in the offspring by 341% on PD 2 and 210% on PD 21. Rats were then fed normal chow until adulthood (PD 56-PD 80). In the adult animals, basal levels of extracellular KYNA, measured in the hippocampus by in vivo microdialysis, were elevated (+12%), whereas extracellular glutamate levels were significantly reduced (−13%). In separate adult animals, early kynurenine treatment was shown to impair performance in two behavioral tasks linked to hippocampal function, the passive avoidance test and the Morris water maze test. Collectively, these studies introduce a novel, naturalistic rat model of SZ and also suggest that increases in brain KYNA during a vulnerable period in brain development may play a significant role in the pathophysiology of the disease.
Rationale Cognitive dysfunctions, including deficits in hippocampus-mediated learning and memory, are core features of the psychopathology of schizophrenia (SZ). Increased levels of kynurenic acid (KYNA), an astrocyte-derived tryptophan metabolite and antagonist of α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors, have been implicated in these cognitive impairments. Objectives Following recent suggestive evidence, the present study was designed to narrow the critical time period for KYNA elevation to induce subsequent cognitive deficits. Methods KYNA levels were experimentally increased in rats (1) prenatally (embryonic day [ED] 15 to ED 22) or (2) during adolescence (postnatal day [PD] 42 to PD 49). The KYNA precursor kynurenine was added daily to wet mash fed to (1) dams (100 mg/day; control: ECon; kynurenine-treated: EKyn) or (2) adolescent rats (300 mg/kg/day; control: AdCon; kynurenine-treated: AdKyn). Upon termination of the treatment, all animals were fed normal chow until biochemical analysis and behavioral testing in adulthood. Results On the last day of continuous kynurenine treatment, forebrain KYNA levels were significantly elevated (EKyn: +472%; AdKyn: +470%). KYNA levels remained increased in the hippocampus of adult EKyn animals (+54%), but were unchanged in adult AdKyn rats. Prenatal, but not adolescent, kynurenine treatment caused significant impairments in two hippocampus-mediated behavioral tasks, passive avoidance and Morris water maze. Conclusions Collectively, these studies provide evidence that a continuous increase in brain KYNA levels during the late prenatal period, but not during adolescence, induces hippocampus-related cognitive dysfunctions later in life. Such increases may play a significant role in illnesses with known hippocampal pathophysiology, including SZ.
Apolipoprotein E (apoE) has been implicated in modulating the central nervous system (CNS) inflammatory response. However, the molecular mechanisms involved in apoE-dependent immunomodulation are poorly understood. We hypothesize that apoE alters the CNS inflammatory response by signaling via low-density lipoprotein (LDL) receptors in glia. To address this hypothesis, we used a small bioactive peptide formed from the receptor-binding domain of apoE, apoE peptide (EP), to study LDL receptor signaling in microglia. To model glial activation, we treated primary mouse microglia and the microglial cell line BV2 with lipopolysaccharide (LPS) and studied two inflammatory responses: an increase in nitric oxide production (NO) and a decrease in apoE production. We found that treatment of primary microglia and BV2 cells with EP attenuated LPS-induced NO accumulation and apoE reduction in a dosedependent manner. Using the receptor associated protein to block ligand binding to members of the LDL receptor family, we found that EP attenuated both of these LPS-induced inflammatory responses via LDL receptors. We studied two intracellular signaling cascades associated with apoE: c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). LPS induced both ERK and JNK activation, while EP induced ERK activation, but drastically reduced JNK activation. Inhibition of JNK with SP600125 reduced LPS-induced NO production and apoE reduction in a dose-dependent manner. Treatment of BV-2 cells with suboptimal EP in combination with JNK inhibitor enhanced attenuation of LPS-induced NO production. These data suggest that microglial LDL receptors regulate JNK activation, which is necessary for apoE modulation of the inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.