Under combined bias and temperature stress, the silicon‐silicon dioxide interface is altered by the introduction of more surface states. This effect has been investigated in metal‐oxide‐semiconductor structures formed by a variety of oxidizing, annealing and metalizing procedures. In most cases, stress of 106 V/cm at 300°C caused a surface‐state peak to appear in the lower half of the bandgap. The surface‐state vs. energy curves vary with the oxidation conditions, but they are reproducible when sample preparation is reproduced. The influence of the following parameters was investigated: dry oxygen and steam oxidation, Cr‐Au and Al contacts, e‐gun and filament evaporation and post‐metalization annealing. The surface‐state density increases linearly with applied field, and it increases in proportion to the logarithm of time. The nature of the distribution also depends on the annealing procedures, and on the contact metal.
We consider the 1 − d heat equation with rapidly oscillating periodic density in a bounded interval with Dirichlet boundary conditions. When the period tends to zero and the density weakly converges to its average we prove that the boundary controls converge to a control of the limit, constant coefficient heat equation when the density is C 2 .The proof is based on a control strategy in three steps in which: we first control the low frequencies of the system, we then let the system to evolve freeely and, finally, we control to zero the whole solution. We use the theory of real exponentials to analyze the low frequencies and Carleman inequalities to control the whole solution.The result is in constrast with the divergent behavior of the null controls for the wave equation with rapidly oscillating coefficients. 2002 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. -On considère l'équation de la chaleur 1 − d avec densité périodique rapidement oscillante de classe C 2 dans un intervalle borné avec des conditions aux limites de Dirichlet. On démontre que, lorsque la période tend vers zéro et donc la densité converge faiblement vers sa moyenne, les contrôles convergent vers un contrôle pour l'équation de la chaleur limite, à coefficients constants.Notre construction se fait en trois étapes. Dans la première nous contrôlons uniformement les bases fréquences. Dans une deuxième étape nous laissons les solutions décroitre sans contrôle. Finalement, nous appliquons un contrôle qui ramène les solutions à zéro. La preuve combine la théorie des sommes d'exponentielles réeles pour analyser les basses fréquences et les inégalités de Carleman pour ramener les solutions à zéro.Ce résultat est à comparer avec ceux établis dans le cadre de l'équation des ondes à coefficients rapidement oscillants. Dans ce dernier cas on sait que les contrôles divergent lorsque la période tend vers zéro. 2002 Éditions scientifiques et médicales Elsevier SAS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.