Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.
Fragile X syndrome (FXS) is an incurable neurodevelopmental disorder with no effective treatment. FXS is caused by epigenetic silencing of FMR1 and loss of FMRP expression. To investigate the consequences of FMRP deficiency in the context of human physiology, we established isogenic FMR1 knockout (FMR1KO) human embryonic stem cells (hESCs). Integrative analysis of the transcriptomic and proteomic profiles of hESC-derived FMRPdeficient neurons revealed several dysregulated pathways important for brain development including processes related to axon development, neurotransmission, and the cell cycle. We functionally validated alterations in a number of these pathways, showing abnormal neural rosette formation and increased neural progenitor cell proliferation in FMR1KO cells. We further demonstrated neurite outgrowth and branching deficits along with impaired electrophysiological network activity in FMRP-deficient neurons. Using isogenic FMR1KO hESC-derived neurons, we reveal key molecular signatures and neurodevelopmental abnormalities arising from loss of FMRP. We anticipate that the FMR1KO hESCs and the neuronal transcriptome and proteome datasets will provide a platform to delineate the pathophysiology of FXS in human neural cells..
Human skin provides both physical integrity and immunological protection from the external environment using functionally distinct layers, cell types and extracellular matrix. Despite its central role in human health and disease, the constituent proteins of skin have not been systematically characterized. Here, we combine advanced tissue dissection methods, flow cytometry and state-of-the-art proteomics to describe a spatially-resolved quantitative proteomic atlas of human skin. We quantify 10,701 proteins as a function of their spatial location and cellular origin. The resulting protein atlas and our initial data analyses demonstrate the value of proteomics for understanding cell-type diversity within the skin. We describe the quantitative distribution of structural proteins, known and previously undescribed proteins specific to cellular subsets and those with specialized immunological functions such as cytokines and chemokines. We anticipate that this proteomic atlas of human skin will become an essential community resource for basic and translational research (https://skin.science/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.