Hematogenous dissemination followed by tissue tropism is a characteristic of the infectious process of many pathogens including those transmitted by blood-feeding vectors. After entering into the blood circulation, these pathogens must arrest in the target organ before they infect a specific tissue. Here, we describe a non-invasive method to visualize and quantify the homing of pathogens to the host tissues. By using in vivo bioluminescence imaging we quantify the accumulation of luciferase-expressing parasites in the host organs during the first minutes following their intravascular inoculation in mice. Using this technique we show that in the malarial infection, once in the blood circulation, most of bioluminescent Plasmodium berghei sporozoites, the parasite stage transmitted to the host skin by a mosquito bite, rapidly home to the liver where they invade and develop inside hepatocytes. This homing is specific to this developmental stage since blood stage parasites do not accumulate in the liver, as well as extracellular Trypanosoma brucei bloodstream forms and liver-infecting Leishmania infantum amastigotes. Finally, this method can be used to study the dynamics of tissue tropism of parasites, dissect the molecular and cellular basis of their increased arrest in organs and to evaluate immune interventions designed to block this targeted interaction.
The identification of surface proteins of the sporozoite stage of malaria parasites important for sporozoite infectivity could aid in the improvement of the efficacy of vaccines targeting pre-erythrocytic stages. Thus, we set out to disclose the role of the secreted protein with an altered thrombospondin repeat (SPATR), which is highly expressed in sporozoites. Previous studies showed an essential function in blood stages, while no role was detected in sporozoites despite high expression. To achieve downregulation of expression in sporozoites while maintaining blood stage expression, a promoter swap approach was used to generate a mutant where the Plasmodium berghei spatr gene was placed under transcriptional control of the hado gene promoter. Downregulation of expression in oocysts and sporozoites resulted in formation of sporozoites with impaired motility, strongly reduced capacity to invade salivary glands, and decreased infectivity to mice. In conclusion, we revealed a new role for SPATR in sporozoite infectivity, highlighting the importance to use complementary methods in studies on sporozoite biology.
S U M M A R YCanine leishmaniosis (CanL) is a major veterinary concern and a public health issue. Serological data are essential for disease management. Several antigens used in serological assays have specificity related problems preventing relevant seropositivity values establishment. Herein we report significant seropositivity level disparity in a study cohort with 384 dogs from eight countries, for antigens traditionally used in CanL -soluble promastigote Leishmania antigens (SPLA) and K39 recombinant protein (rK39): 43·8 and 2·9% for SPLA and rK39, respectively. To better understand the reasons for this disparity, CanL-associated serological response was characterized using, for complement serological evaluation, a ubiquitous antigen -soluble Escherichia coli antigens (SECAs). Using cohorts of CanL dogs and dogs without clinical evidences of CanL from non-endemic regions of Portugal, the serological response of CanL animals followed specific trend of seropositivity rK39 > SPLA > SECA absent in non-diseased animals. Using receiver operating characteristic curve analysis, these characteristic trends were converted in ratios, SPLA/SECA, rK39/SECA and rK39/ SPLA, that presented high predictive for discriminating the CanL cohort that was potentiated when applied in a scoring system involving positivity to four out of five predictors (rK39, SPLA, SPLA/SECA, rK39/SECA and rK39/ SPLA). In fact, this approach discriminated CanL with similar sensitivity/specificity as reference antigens, diminishing seropositivity in European cohort to 1·8%. Ultimately, non-related antigens like SECA and seropositivity ratios between antigens enable different perspectives into serological data focusing on the search of characteristic serological signatures and not simple absolute serology values contributing to comprehensive serological status characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.