There is growing interest in genetic arrhythmia since mutations in gene which encodes the ion channel underlie numerous arrhythmias. Hasegawa et al reported that G229D mutation in KCNQ1 underlies atrial fibrillation due to significant shortening of action potential duration (APD) in atrial cells. Here, we predicted whether KCNQ1 G229D mutation affects ventricular fibrillation generation, although it shortens APD slightly compared with the atrial cell. We analyzed the effects of G229D mutation on electrical and mechanical ventricle behaviors (not considered in previous studies). We compared action potential shapes under wild-type and mutant conditions. Electrical wave propagations through ventricles were analyzed during sinus rhythm and reentrant conditions. I enhancement due to G229D mutation shortened the APD in the ventricular cells (6%, 0.3%, and 8% for endo, M, and epi-cells, respectively). The shortened APD contributed to 7% shortening of QT intervals, 29% shortening of wavelengths, 20% decrease in intraventricular pressure, and increase in end-systolic volume 17%, end-diastolic volume 7%, and end-diastolic pressure 11%, which further resulted in reduction in stroke volume as well as cardiac output (28%), ejection fraction 33% stroke work 44%, and ATP consumption 28%. In short, using computational model of the ventricle, we predicted that G229D mutation decreased cardiac pumping efficacy and increased the vulnerability of ventricular fibrillation.
Background and aims The existence of non-excitable cells in the myocardium leads to the increasing conduction non-uniformity and decreasing myocardial electrical conductivity. Slowed myocardial conduction velocity (MCV) believed to enhance the probability of cardiac arryhthmia and alter the cardiac mechanical pumping efficacy, even in sinus rhythm. Though several studies on the correlation between MCV and cardiac electrical instabilities exist, there has been no study concerning correlation or causality between MCV and cardiac mechanical pumping efficacy, due to the limitation in clinical methods to document and evaluate cardiac mechanical responses directly. The goal of this study was to examine quantitatively the cardiac pumping efficacy under various MCV conditions using three-dimensional (3D) electromechanical model of canine’s failing ventricle.Methods The electromechanical model used in this study composed of the electrical model coupled with the mechanical contraction model along with a lumped model of the circulatory system. The electrical model consisted of 241,725 nodes and 1,298,751 elements of tetrahedral mesh, whereas the mechanical model consisted of 356 nodes and 172 elements of hexahedral mesh with Hermite basis. First, we performed the electrical simulation for five different MCV conditions, from 30 to 70 cm/s with 10 cm/s interval during sinus pacing. Then, we compared the cardiac electrical and mechanical responses of each MCV condition, such as the electrical activation time (EAT), pressure, volume, and energy consumption of the myocardium. The energy consumption of the myocardium was calculated by integrating ATP consumption rate of each node in myofilament model.ResultsThe result showed that under higher MCV conditions, the EAT, energy consumption, end diastolic and systolic volume are gradually decreased. Meanwhile, the systolic pressure, stroke volume, stroke work, and stroke work to ATP are increased as the MCV values increased. The cardiac functions and performances are more efficient under higher MCV conditions by consuming smaller energy (ATP) while carrying more works.ConclusionIn conclusion, this study reveals that MCV has strong correlation with the cardiac pumping efficacy. The obtained results provide useful information to estimate the effect of MCV on the electro-physiology and hemodynamic responses of the ventricle and can be used for further study about arrhythmogeneis and heart failure.
Valvular insufficiency affects cardiac responses and the pumping efficacy of left ventricular assist devices (LVADs) when patients undergo LVAD therapy. Knowledge of the effect of valvular regurgitation on the function of LVADs is important when treating heart failure patients. The goal of this study was to examine the effect of valvular regurgitation on the ventricular mechanics of a heart under LVAD treatment and the pumping efficacy of an LVAD using a computational model of the cardiovascular system. For this purpose, a 3D electromechanical model of failing ventricles in a human heart was coupled with a lumped-parameter model of valvular regurgitation and an LVAD-implanted vascular system. We used the computational model to predict cardiac responses with respect to the severity of valvular regurgitation in the presence of LVAD treatment. An LVAD could reduce left ventricle (LV) pressure (up to 34%) and end-diastolic ventricular volume (up to 80%) and maintain cardiac output at the estimated flow rate from the LVAD under the condition of mitral regurgitation (MR); however, the opposite would occur under the condition of aortic regurgitation (AR). Considering these physiological responses, we conclude that AR, and not MR, diminishes the pumping function of LVADs.
Berdasarkan instruksi dari Badan Akreditasi Nasional Pendidikan Anak Usia Dini (BAN-PAUD), salah alat yang harus disediakan oleh pihak sekolah adalah Buku Penghubung, sebagai media untuk monitoring dan pelaporan tumbuh kembang siswa kepada orang tuanya. Sekolah Alam Gaharu (SAG) Bandung telah menggunakan Buku Penghubung, namun sistemnya masih tergolong konvensional. Pada sistem konvensional ini ditemukan permasalahan-permasalahan yang mengakibatkan ketidakselarasan antara wali murid dan guru/fasilitator kelas dalam hal monitoring tumbuh kembang anak, seperti: buku yang rentan rusak atau hilang, kurang privasi, tidak real-time dan tidak dapat mengakomodasi file foto/video kegiatan. Dengan kemajuan teknologi pada era sekarang, memungkinkan dilakukan transformasi buku penghubung berbasis kertas menjadi bentuk aplikasi digital berbasis website maupun Android/iOS. Untuk itu, pada kegiatan pengabdian masyarakat ini dikenalkan sebuah aplikasi Buku Penghubung Digital bernama Kids Note. Pelatihan diberikan kepada 50 peserta yang terdiri dari orang tua/wali murid dan guru/fasilitator di Sekolah Alam Gaharu. Berdasarkan survei yang dibagikan pasca kegiatan, didapatkan hasil bahwa 84% peserta memahami cara penggunaan aplikasi Kids Note dan 92% diantaranya menyatakan aplikasi Kids Note mampu mengakomodasi kebutuhan monitoring dan pelaporan tumbuh kembang anak di SAG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.