Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.
The use of faecal DNA, although a promising tool for the population monitoring of mammals, has not yet become a fully exploited and standard practice, mainly because low target DNA concentration, DNA degradation, and co‐purification of inhibitors demand extra laboratory procedures to improve success and reliability. Here we evaluate a simple method that enables sampling of DNA in the field through the collection of the intestinal cells present on the surface of a scat using a swab. The swab is immediately placed in a vial containing a lysis buffer that preserves the DNA for its later extraction. DNA extracts of three species of herbivores (goat, fallow deer and white‐tailed deer), two carnivores (Iberian lynx and domestic dog) and one omnivore species (brushtail possum) were characterised in terms of target and total DNA quantity, PCR inhibition and genotyping success. Direct comparison was carried out with duplicate samples preserved in 96% ethanol and extracted via a commonly used commercial DNA extraction kit for faecal material. Results from these comparisons show that swabbing the samples in situ not only simplifies field collection and sample handling in the laboratory, but generally optimises target DNA recovery, minimises co‐purification of PCR inhibitors and provides good quality DNA for the species tested, especially for herbivores. This method is also less time‐consuming and more cost‐effective, thus providing a more convenient and efficient alternative for non‐invasive genetic studies.
The prey range of the invasive Asian paper wasp, Polistes chinensis antennalis, was studied using molecular diagnostics. Nests of paper wasps were collected from urban residential and salt marsh habitats, larvae were removed and dissected, and DNA in the gut of the paper wasp larvae was amplified and sequenced with cytochrome c oxidase subunit I (COI). Seventy percent of samples (211/299) yielded medium-to high-quality sequences, and prey identification was achieved using BLAST searches in BOLD. A total of 42 taxa were identified from 211 samples. Lepidoptera were the majority of prey, with 39 taxa from 91% of samples. Diptera was a relatively small component of prey (three taxa, 19 samples). Conclusive species-level identification of prey was possible for 67% of samples, and genus-level identification, for another 12% of samples. The composition of prey taken was different between the two habitats, with 2.5× more native prey species being taken in salt marsh compared with urban habitats. The results greatly extend the prey range of this invasive species. The technique is a more effective and efficient approach than relying on the collection of “prey balls”, or morphological identification of prey, for the study of paper wasps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.