Hydrophobic zein-based functional films incorporating licorice essential oil were successfully developed as new alternative materials for food packaging. The lotus-leaf negative template was obtained using polydimethylsiloxane (PDMS). The complex surface patterns of the lotus leaves were transferred onto the surface of the zein-based films with high fidelity (positive replica), which validates the proposed proof-of-concept. The films were prepared by casting method and fully characterized by Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The grammage, thickness, contact angle, mechanical, optical and barrier properties of the films were measured, together with the evaluation of their biodegradability, antioxidant and antibacterial activities against common foodborne pathogens (Enterococcus faecalis and Listeria monocytogenes). The zein-based films with the incorporation of licorice essential oil presented the typical rugosities of the lotus leaf making the surfaces very hydrophobic (water contact angle of 112.50°). In addition to having antioxidant and antibacterial properties, the films also shown to be biodegradable, making them a strong alternative to the traditional plastics used in food packaging.
Active packaging is designed to control the development of decay- and disease-causing microorganisms and is emerging as a promising technology for extending shelf-life, maintaining food safety, reducing waste, and minimizing the risks for foodborne diseases. The goal of this work was to develop and characterize bioactive pullulan-based films, containing rockrose (Cistus ladanifer) essential oil. Among other abundant compounds (camphene, bornyl acetate and trans-pinocarveol), α-pinene was identified as the major compound of rockrose essential oil (39.25%). The essential oil presented stronger antibacterial activity against Gram-positive than against Gram-negative bacteria. The antioxidant results indicate the potential of the developed films to be used to package foods susceptible to oxidation and rancification, thus improving their shelf-life. Also, this study reflects the potential of rockrose essential oil, free or incorporated in pullulan, as a promising quorum sensing inhibitor, since it was able to interrupt intercellular communication, inhibiting violacein production. Electronic microscopy images showed the antibiofilm activity of the films with rockrose essential oil that were able to influence bacterial adhesion, which may be explained by the differences in the surface free energy of the films, as also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.