The present work is focused on stability of shock wave-exposed copper oxide (CuO) nanoparticles. CuO nanoparticles are synthesized by chemical reduction method and exposed to 100 shock pulses having Mach number 2.4. The table top semiautomatic pressure-driven shock tube is used to generate shock waves for the present experiment. The influence of shock waves on the treated and untreated CuO nanoparticles are explored and characterized by a variety of properties like structural, molecular and morphological details observed using powder XRD, FTIR and SEM, respectively. The powder XRD profile confirmed that there are no lattice defects or any deformation except negligible changes in grain size. SEM images established that the shock wave-loaded CuO nanoparticles have good structural and morphological stability. The obtained results showed that CuO nanoparticles can be used in aerospace, nuclear reactors and high-pressure applications which undergo extreme conditions. The details are presented intensely in the following sections.
Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.