The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article.
Transfer RNAs (tRNAs) are widely known for their roles in the decoding of the linear mRNA information into amino acid sequences of proteins. They are also multifunctional platforms in the translation process and have other roles beyond translation, including sensing amino acid abundance, interacting with the general stress response machinery, and modulating cellular adaptation, survival, and death. In this mini-review, we focus on the emerging role of tRNA genes in the organization and modification of the genomic architecture of yeast and the role of tRNA misexpression and decoding infidelity in genome stability, evolution, and adaption. We discuss published work showing how quickly tRNA genes can mutate to meet novel translational demands, how tRNAs speed up genome evolution, and how tRNA genes can be sites of genomic instability. We highlight recent works showing that loss of tRNA decoding fidelity and small alterations in tRNA expression have unexpected and profound impacts on genome stability. By dissecting these recent evidence, we hope to lay the groundwork that prompts future investigations on the mechanistic interplay between tRNAs and genome modification that likely triggers genome evolution.
Candida albicans typically resides in the human gastrointestinal tract and mucosal membranes as a commensal organism. To adapt and cope with the host immune system, it has evolved a variety of mechanisms of adaptation such as stress-induced mutagenesis and epigenetic regulation. Niche-specific patterns of gene expression also allow the fungus to fine-tune its response to specific microenvironments in the host and switch from harmless commensal to invasive pathogen. Proteome plasticity produced by CUG ambiguity, on the other hand is emerging as a new layer of complexity in C. albicans adaptation, pathogenesis, and drug resistance. Such proteome plasticity is the result of a genetic code alteration where the leucine CUG codon is translated mainly as serine (97%), but maintains some level of leucine (3%) assignment. In this review, we dissect the link between C. albicans non-standard CUG translation, proteome plasticity, host adaptation and pathogenesis. We discuss published work showing how this pathogen uses the fidelity of protein synthesis to spawn novel virulence traits.
The complex biology of the human pathogen Candida albicans is reflected in its remarkable ability to proliferate in numerous body sites, adapt to drastic changes in the environment, form various types of colonies and grow in yeast, pseudo-hyphal and hyphal forms. Much has been learnt in recent years about the relevance of this phenotypic plasticity, but the mechanisms that support it are still not fully understood. We have demonstrated that atypical translation of the CUG codon is a source of unexpected morphological diversity. The CUG codon is translated as both leucine (Leu) (~3%) and serine (Ser) (~97%) in normal growth conditions, but Ser/Leu levels change in response to stress. Remarkably, recombinant C. albicans strains incorporating between 20% and 99% of Leu at CUG sites display a diverse array of phenotypes and produce colonies of variable morphology containing a mixture of yeast, pseudohyphal and hyphal cells. In this work we investigate the role of the CUG codon in the yeast-hypha transition. Our data show that increasing incorporation levels of Leu at CUG sites trigger hyphal initiation under non-inducing conditions by reducing farnesol production, and increasing the degradation of the Nrg1 hyphal repressor. We propose that dual CUG Ser/Leu translation triggers filamentation via the Nrg1 pathway.ImportanceThe unique translation of the CUG codon as both Ser (~97%) and Leu (~3%) plays a key role in the production of high genomic and phenotypic diversity in C. albicans. The molecular mechanisms that support such diversity are poorly understood. Here, we show that increased Leu incorporation at CUG sites induce hyphae formation in media where C. albicans normally grows in the yeast form. The data show that increasing Leu at CUG sites triggers the degradation of the hyphal repressor Nrg1, allowing for full expression of hyphal genes. Since filamentation is important for invasion of host tissues, this work shows how the atypical translation of a single codon may play a critical role in the virulence of all fungi of the CTG clade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.