Expression of eight transporter genes of Escherichia coli K-12 and its ⌬acrAB mutant prior to and after induction of both strains to tetracycline resistance and after reversal of induced resistance were analyzed by quantitative reverse transcriptase PCR. All transporter genes were overexpressed after induced resistance with acrF being 80-fold more expressed in the ⌬acrAB tetracycline-induced strain.
Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.
This work aimed at evaluating the potential of using natural deep eutectic systems (NADES) as cryoprotectant agents (CPAs). Several combinations between natural primary metabolites that have been identified in animals that live in extreme cold climates were prepared. All systems showed very little cytoxicity towards L929 cells at concentrations high as 1–2 M. Moreover, this cell line was highly tolerant to 10% (w/v) of NADES when compared to Me
2
SO. To test NADES as CPAs, two cell lines were used, L929 and HacaT cells. After freeze/thawing cycle, it was possible to observe that for L929 cells, NADES presented similar behaviour to Me
2
SO. For Hacat cell line a significant improvement on post-thawing recovery was observed. Moreover, the results presented herein showed that NADES do not need to be removed from the freezing media after thawing the cells, which is a great advantage of these materials. Additionally, we have shown that NADES can act as CPA when cells are frozen at −20 °C. In overall, the results demonstrate the high potential of NADES to be used in cryobiology as alternative CPAs.
8-β-d-Glucopyranosylgenistein (1), the major component of Genista tenera, was synthesized and showed an extensive therapeutical impact in the treatment of STZ-induced diabetic rats, producing normalization of fasting hyperglycemia and amelioration of excessive postprandial glucose excursions and and increasing β-cell sensitivity, insulin secretion, and circulating insulin within 7 days at a dose of 4 (mg/kg bw)/day. Suppression of islet amyloid polypeptide (IAPP) fibril formation by compound 1 was demonstrated by thioflavin T fluorescence and atomic force microscopy. Molecular recognition studies with IAPP and Aβ1-42 employing saturation transfer difference (STD) confirmed the same binding mode for both amyloid peptides as suggested by their deduced epitope. Insights into the preferred conformation in the bound state and conformers' geometry resulting from interaction with Aβ1-42 were also given by STD, trNOESY, and MM calculations. These studies strongly support 8-β-d-glucopyranosylgenistein as a promising molecular entity for intervention in amyloid events of both diabetes and the frequently associated Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.