Maritime traffic is an issue of major ecological concern, and vessel noise may be an important source of disturbance for coastal cetaceans. In the Sado estuary, Portugal, core habitat areas of a small resident population of bottlenose dolphins (Tursiops truncatus) overlap with routes of intense maritime traffic, which presents an opportunity to assess vocal responses of these dolphins to specific vessel noise sources. Field recordings of dolphin vocalizations were made from April to November 2011, using a calibrated system. Dolphin behavior and group size were recorded, as well as the operating boat condition (no boats or specific boat type) in a 1,000 m radius. Spectral analyses of vocalizations allowed the categorization and quantitative analysis of echolocation click trains and social calls, including whistles. Mean overall call rates decreased significantly in the presence of operating vessels. Creaks (fast click trains) were significantly reduced in the presence of ferry boats. Significant differences were also observed in the whistles' minimum, maximum, and start frequencies. These changes in call emission rates and temporary shifts in whistles characteristics may be a vocal response to the proximity of operating vessels, facilitating communication in this busy, noisy estuary.
Common bottlenose dolphins (Tursiops truncatus), produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011–2014), and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval) were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories). According to the discriminant function analysis (Wilk’s Λ = 0.11, F3, 2.41 = 282.75, P < 0.001), repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98). Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001), inter-click-interval (P < 0.001) and duration (P < 0.001). We document the occurrence of a distinct signal type–short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the contexts of emission, geographic variation and the functional significance of pulsed signals.
Acoustical geographic variation is common in widely distributed species and it is already described for several taxa, at various scales. In cetaceans, intraspecific variation in acoustic repertoires has been linked to ecological factors, geographical barriers, and social processes. For the common bottlenose dolphin (Tursiops truncatus), studies on acoustic variability are scarce, focus on a single signal type—whistles and on the influence of environmental variables. Here, we analyze the acoustic emissions of nine bottlenose dolphin populations across the Atlantic Ocean and the Mediterranean Sea, and identify common signal types and acoustic variants to assess repertoires’ (dis)similarity. Overall, these dolphins present a rich acoustic repertoire, with 24 distinct signal sub-types including: whistles, burst-pulsed sounds, brays and bangs. Acoustic divergence was observed only in social signals, suggesting the relevance of cultural transmission in geographic variation. The repertoire dissimilarity values were remarkably low (from 0.08 to 0.4) and do not reflect the geographic distances among populations. Our findings suggest that acoustic ecology may play an important role in the occurrence of intraspecific variability, as proposed by the ‘environmental adaptation hypothesis’. Further work may clarify the boundaries between neighboring populations, and shed light into vocal learning and cultural transmission in bottlenose dolphin societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.