SummaryDendritic cells (DCs) play an essential role in immunity against bacteria by phagocytosis and by eliciting adaptive immune responses. Previously, we demonstrated that human monocyte-derived DCs (MDDCs) express a high content of cell surface a2,6-sialylated glycans. However, the relative role of these sialylated structures in phagocytosis of bacteria has not been reported. Here, we show that treatment with a sialidase significantly improved the capacity of both immature and mature MDDCs to phagocytose Escherichia coli. Desialylated MDDCs had a significantly more mature phenotype, with higher expression of MHC molecules and interleukin (IL)-12, tumour necrosis factor-a, IL-6 and IL-10 cytokines, and nuclear factor-jB activation. T lymphocytes primed by desialylated MDDCs expressed more interferon-c when compared with priming by sialylated MDDCs. Improved phagocytosis required E. coli sialic acids, indicating a mechanism of host-pathogen interaction dependent on sialic acid moieties. The DCs harvested from mice deficient in the ST6Gal.1 sialyltransferase showed improved phagocytosis capacity, demonstrating that the observed sialidase effect was a result of the removal of a2,6-sialic acid. The phagocytosis of different pathogenic E. coli isolates was also enhanced by sialidase, which suggests that modifications on MDDC sialic acids may be considered in the development of MDDC-based antibacterial therapies. Physiologically, our findings shed new light on mechanisms that modulate the function of both immature and mature MDDCs, in the context of host-bacteria interaction. Hence, with particular relevance to DC-based therapies, the engineering of a2,6-sialic acid cell surface is a novel possibility to fine tune DC phagocytosis and immunological potency.
Introduction: A functional vascular endothelial growth factor A (VEGF-A) autocrine loop is crucial for bladder cancer cell survival. We reasoned that treatment with the anti-VEGF antibody bevacizumab may result either in cell growth prevention or in the cell adaptation to compensate VEGF deprivation. Methods: The cytotoxicity of different levels of bevacizumab and its effect on the gene expression was analyzed in human bladder cancer cell lines. Results: Inhibition of bladder cancer cell proliferation was observed at >2.5 mg/ml of bevacizumab. Non-muscle-invasive bladder cancer cells expressed high concentrations of VEGF-A, and were less susceptible to bevacizumab inhibition. At 0.5 mg/ml (FDA approved concentration) of bevacizumab, cells increase their expression of VEGF-A, VEGF-A receptors and related growth factors. Conclusions: Bevacizumab cytotoxicity is only observed at high concentration, and it is inversely correlated with the basal VEGF-A expression of the bladder cancer cells. This is the first report showing that, at clinical bevacizumab concentrations, cancer cells compensate the VEGF-A blockade, by improving the expression of VEGF-A and related genes, highlighting the need to follow the patient’s adaptation response to bevacizumab treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.