Emerging evidence indicates that in addition to its well-recognized functions in antiviral RNA silencing, dsRNA elicits pattern-triggered immunity (PTI), likely contributing to plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multi-color in vivo imaging, analysis of green fluorescent protein (GFP) mobility, callose staining and plasmodesmal marker lines in Arabidopsis thaliana and Nicotiana benthamiana, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1) the BOTRYTIS INDUCED KINASE1 (BIK1)/AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE KINASE1 (BIK1/PBL1) kinase module, PLASMODESMATA-LOCATED PROTEINs (PDLPs)1/2/3, as well as CALMODULIN-LIKE 41 (CML41) and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. Unlike the classical bacterial elicitor flagellin, dsRNA does not trigger detectable reactive oxygen species (ROS) burst, substantiating the idea that different microbial patterns trigger partially shared immune signaling frameworks with distinct features. Likely as a counter strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support a model in which plant immune signaling constrains virus movement by inducing callose deposition at plasmodesmata and reveals how viruses counteract this layer of immunity.
Emerging evidence indicates that in addition to the well-recognized antiviral RNA silencing, dsRNA elicits responses of pattern-triggered immunity (PTI), likely contributing plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multi-color in vivo imaging by GFP mobility, staining of callose and plasmodesmal marker lines, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident kinase module of SERK1 and BIK1/PBL1, plasmodesmata-localized proteins PDLP1/2/3 and calmodulin-like CML41, and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. In addition, unlike classical bacterial elicitor flagellin, dsRNA does not trigger detectable reactive oxygen species (ROS) burst, further substantiating a partially shared immune signaling framework with distinct features triggered by different microbial patterns. Likely as a counteract strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support the new model of how plant immune signaling constrains the virus movement by inducing callose deposition at plasmodesmata and how viruses counteract this layer of immunity.
SummaryThe virome of plants is dominated by RNA viruses 1 and several of these cause devastating diseases in cultivated plants leading to global crop losses 2. To infect plants, RNA viruses engage in complex interactions with compatible plant hosts. In cells at the spreading infection front, RNA viruses replicate their genome through double-stranded RNA (dsRNA) intermediates and interact with cellular transport processes to achieve cell-to-cell movement of replicated genome copies through cell wall channels called plasmodesmata (PD) 3. In order to propagate, viruses also must overcome host defense responses. In addition to triggering the antiviral RNA silencing response, RNA virus infection also elicits pattern-triggered immunity (PTI) 4 whereby dsRNA, a hallmark of virus replication, acts as an important elicitor 5. This innate antiviral immune response is also triggered when dsRNA is applied externally and does not require sequence homology to the virus 5. However, the mechanism by which PTI restricts virus infection is not known. Here, we show that dsRNA inhibits the progression of virus infection by triggering callose deposition at plasmodesmata and the inhibition of transport through these cell-to-cell communication channels. The dsRNA-induced signaling pathway leading to callose deposition is independent of ROS production and thus distinguished from pathways triggered by bacterial and fungal elicitors. The dsRNA-induced host response at plasmodesmata is suppressed by the Tobacco mosaic virus movement protein (MP). Thus, the virus uses MP to inhibit innate dsRNA-induced immunity at plasmodesmata, which could be a general strategy of phytoviruses to overcome plant defenses and spread infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.