Contents 36I.36II.37III.40IV.41V.41VI.42VII.43VIII.4445References45 Summary The dispersal of seeds away from parent plants seems to be the underlying selective force in the evolution of fleshy fruits attractive to animals. Secondary metabolites, which are not essential compounds for plant survival, are involved in the interaction of fleshy fruits with seed dispersers and antagonists. Plant volatile organic compounds (VOCs) are secondary metabolites that play important roles in biotic interactions and in abiotic stress responses. They are usually accumulated at high levels in specific plant tissues and organs, such as fleshy fruits. The study of VOCs emitted during fruit development and after different biotic challenges may help to determine the interactions of fleshy fruits not only with legitimate vertebrate dispersers, but also with insects and microorganisms. A knowledge of fruit VOCs could be used in agriculture to generate attraction or repellency to pests and resistance to pathogens in fruits. This review provides an examination of specific fruit VOC blends as signals for either seed dispersal or predation through simple or complex trophic chains, which may also have consequences for an understanding of the importance of biodiversity in wild areas.
Plants use volatile terpene compounds as odor cues for communicating with the environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction between the plant, insects, and microorganisms. Because limonene represents up to 97% of the total volatiles in orange (Citrus sinensis) fruit peel, we chose to down-regulate the expression of a limonene synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, they showed marked resistance against these pathogens that were unable to infect the peel tissues. Moreover, males of the citrus pest medfly (Ceratitis capitata) were less attracted to low limonene-expressing fruits than to control fruits. These results indicate that limonene accumulation in the peel of citrus fruit appears to be involved in the successful trophic interaction between fruits, insects, and microorganisms. Terpene down-regulation might be a strategy to generate broadspectrum resistance against pests and pathogens in fleshy fruits from economically important crops. In addition, terpene engineering may be important for studying the basic ecological interactions between fruits, herbivores, and pathogens.
SummaryOrange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the b-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous b-carotene hydroxylase gene (Csb-CHX) that is involved in the conversion of b-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csb-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in b-carotene content in the pulp. The capacity of b-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the b-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops.
Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck) genome sequence allowed us to characterize for the first time the terpene synthase (TPS) family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z)-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.