The Human BioMolecular Atlas Program (HuBMAP) aims to create a multi-scale spatial atlas of the healthy human body at single-cell resolution by applying advanced technologies and disseminating resources to the community. As the HuBMAP moves past its first phase, creating ontologies, protocols and pipelines, this Perspective introduces the production phase: the generation of reference spatial maps of functional tissue units across many organs from diverse populations and the creation of mapping tools and infrastructure to advance biomedical research.HuBMAP was founded with the goal of establishing state-of-the-art frameworks for building spatial multiomic maps of non-diseased human organs at single-cell resolution 1 . During the first phase (2018)(2019)(2020)(2021)(2022), the priorities of the project included the validation and development of assay platforms; workflows for data processing, management, exploration and visualization; and the establishment of protocols, quality control standards and standard operating procedures. Extensive infrastructure was established through a coordinated effort among the various HuB-MAP integration, visualization and engagement teams, tissue-mapping centres, technology and tools development and rapid technology implementation teams and working groups 1 . Single-cell maps, predominantly consisting of two-dimensional (2D) spatial data as well as data from dissociated cells, were generated for several organs. The HuBMAP Data Portal (https://portal.hubmapconsortium.org) was established for open access to experimental tissue data and reference atlas data.The infrastructure was augmented with software tools for tissue data registration, processing, annotation, visualization, cell segmentation and automated annotation of cell types and cellular neighbourhoods from spatial data. Computational methods were developed for integrating multiple data types across scales and interpretation 2 . Standard reference terminology and a common coordinate framework spanning anatomical to biomolecular scales were established to ensure interoperability across organs, research groups and consortia 3 . Guidelines to capture high-quality multiplexed spatial data 4 were established including validated panels of cell-and structure-specific antibodies 5 . The first phase produced a large number of manuscripts (https://commonfund.nih.gov/ publications?pid=43) including spatially resolved single-cell maps [6][7][8][9][10][11] .The production phase of HuBMAP was launched in the autumn of 2022. The focus is on scaling data production spanning diverse biological variables (for example, age and ethnicity) and deployment and enhancement of analytical, visualization and navigational tools to generate high-resolution 3D accessible maps of major functional tissue units from more than 20 organs. This phase involves over 60 institutions and 400 researchers with opportunities for active intra-and inter-consortia collaborations and building a foundational resource for new biological insights and precision medicine. Below, ...
Dual-calibrated functional MRI (dc-fMRI) can map brain oxygen extraction fraction (OEF) by measuring BOLD-ASL signal changes during arterial O2 and CO2 modulations. Two modulations are required to decouple OEF and the deoxyhemoglobin-sensitive blood volume. Here, we propose a single gas calibrated approach that integrates a model of oxygen transport that links blood volume and CBF to OEF. Simulations demonstrated the method’s viability. In-vivo application with hypercapnia provided estimates of grey matter OEF in agreement with dc-fMRI and with whole-brain OEF derived from signal phase measures in the superior sagittal sinus. The simplified calibrated fMRI method holds promise for clinical application.
Diffusion-weighted imaging (DWI) acquired with echo-planar imaging (EPI) is utilized in breast MRI protocols to evaluate cancer lesions. While clinical implementation is limited by the distortion artifacts which affect EPI, methods such as reverse polarity gradient (RPG) and data collection with reduced field-of-view (FOV) have been used to reduce distortion. Evaluating these methods in minimizing distortion for images acquired with parallel imaging (PI) is a promising approach to improve EPI-DWI breast imaging. Here, we evaluated the distortion magnitude of EPI-DWI data collected with and without PI on a breast phantom and tested the feasibility of this protocol in vivo.
Establishing ADC repeatability is important for clinical translation of quantitative DWI. Pelvic ADC repeatability in healthy men and premenopausal women are not well-defined. Four men were scanned twice and six women were scanned each week of their normal 28-day menstrual cycle using a 3.0T scanner. Prostate, cervix, and uterine tissue ROIs were drawn to calculate median ADC values. Minimum reliably detectable ADC change (RC) was estimated at 16% and 11% within the prostatic peripheral and transition zones, respectively. Female reproductive tissue ADCs and repeatability varied across the menstrual cycle, with the greatest RCs displayed by endometrium (40%) and cervix (36%).
Dice Polo que el ser humano es un espíritu en el tiempo, y ello se manifiesta también en el cuerpo. Por eso, las explicaciones que nos ofrece la biología evolucionista sobre nuestra realidad vital no son completas si no tienen en cuenta su dualidad con lo superior. En este trabajo pretendemos profundizar en la idea de que el hombre no se finaliza en la especie, sino que la trasciende; en esto consiste el concepto de continuatio naturae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.