The organization and dynamics of microtubules (MTs) and the actin cytoskeleton are critical for the correct development and functions of neurons, including intracellular traffic and signaling. In vitro ethanol exposure impairs endocytosis, exocytosis, and nucleocytoplasmic traffic in astrocytes and alters endocytosis in cultured neurons. In astrocytes, these effects relate to changes in the organization and/or function of MTs and the actin cytoskeleton. To evaluate this possibility in hippocampal cultured neurons, we analyzed if chronic ethanol exposure affects the levels, assembly, and cellular organization of both cytoskeleton elements and the possible underlying mechanisms of these effects by morphological and biochemical methods. In the experiments described below, we provide the first evidence that chronic alcohol exposure decreases the amount of both filamentous actin and polymerized tubulin in neurons and that the number of MTs in dendrites lowers in treated cells. Alcohol also diminishes the MT-associated protein-2 levels, which mainly localizes in the somatodendritic compartment in neurons. Ethanol decreases the levels of total Rac, Cdc42, and RhoA, three small guanosine triphosphatases (GTPases) involved in the organization and dynamics of the actin cytoskeleton and MTs. Yet when alcohol decreases the levels of the active forms (GTP bound) of Rac1 and Cdc42, it does not affect the active form of RhoA. We also investigated the levels of several effector and regulator molecules of these GTPases to find that alcohol induces heterogeneous results. In conclusion, our results show that MT, actin cytoskeleton organization, and Rho GTPase signaling pathways are targets for the toxic effects of ethanol in neurons.
Growth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles. The results demonstrate that unambiguous multi-cycle synchrony, critical for verifying the absence of significant growth imbalances induced by the synchronization procedure, is feasible with these cell lines, and possibly others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.