SummaryThe Crc protein is a global regulator that controls the hierarchical assimilation of carbon sources in Pseudomonads by inhibiting expression of several catabolic pathways. Crc does not bind DNA and its mechanism of action has remained elusive. Among other genes, Crc inhibits expression of alkS, the transcriptional activator of the Pseudomonas putida OCT plasmid alkane degradation pathway. AlkS activates expression of its own gene. In the presence of saturating AlkS levels, translational fusions of alkS to the lacZ reporter gene were responsive to Crc, but transcriptional fusions were not. In translational fusions, the first 33 nt of alkS mRNA, which includes up to position +3 relative to the translation start site, were sufficient to confer an efficient response to Crc. In vitro, purified Crc could bind specifically to an alkS mRNA fragment spanning positions +1 to +43, comprising the translation initiation region. We have previously shown that Crc has little effect on the stability of alkS mRNA. We conclude that Crc modulates AlkS levels by binding to the translation initiation region of alkS mRNA, thereby inhibiting translation. Because AlkS is an unstable protein present in limiting amounts, reducing its levels leads to decreased expression of all genes in the pathway.
Expression of the alkane degradation pathway encoded by the OCT plasmid of Pseudomonas putida GPo1 is regulated by two control systems. One relies on the transcriptional regulator AlkS, which activates expression of the pathway in the presence of alkanes. The other, which is a dominant global regulation control, represses the expression of the pathway genes when a preferred carbon source is present in the growth medium in addition to alkanes. This catabolite repression control occurs through a poorly characterized mechanism that ultimately regulates transcription from the two AlkS-activated promoters of the pathway. To identify the factors involved, a screening method was developed to isolate mutants without this control. Several isolates were obtained, all of which contained mutations that mapped to genes encoding cytochrome o ubiquinol oxidase, the main terminal oxidase of the electron transport chain under highly aerobic conditions. Elimination of this terminal oxidase led to a decrease in the catabolic repression observed both in rich Luria-Bertani medium and in a defined medium containing lactate or succinate as the carbon source. This suggests that catabolic repression could monitor the physiological or metabolic status by using information from the electron transport chain or from the redox state of the cell. Since inactivation of the crc gene also reduces catabolic repression in rich medium (although not that observed in a defined medium), a strain was generated lacking both the Crc function and the cytochrome o terminal oxidase. The two mutations had an additive effect in relieving catabolic repression in rich medium. This suggests that crc and cyo belong to different regulation pathways, both contributing to catabolic repression.
The global regulatory protein Crc is involved in the repression of several catabolic pathways for sugars, hydrocarbons, and nitrogenated and aromatic compounds in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolite repression), therefore modulating carbon metabolism. We have analyzed whether the levels or the activity of Crc is regulated. Crc activity was followed by its ability to inhibit the induction by alkanes of the P. putida OCT plasmid alkane degradation pathway when cells grow in a complete medium, where the effect of Crc is very strong. The abundance of crc transcripts and the amounts of Crc protein were higher under repressing conditions than under nonrepressing conditions. The presence of crc on a high-copy-number plasmid considerably increased Crc levels, but this impaired its ability to inhibit the alkane degradation pathway. Crc shows similarity to a family of nucleases that have highly conserved residues at their catalytic sites. Mutation of the corresponding residues in Crc (Asp 220 and His 246 ) led to proteins that can inhibit induction of the alkane degradation pathway when present at normal or elevated levels in the cell. Repression by these mutant proteins occurred only under repressing conditions. These results suggest that both the amounts and the activity of Crc are modulated and support previous proposals that Crc may form part of a signal transduction pathway. Furthermore, the activity of the mutant proteins suggests that Crc is not a nuclease.Expression of many bacterial catabolic pathways is controlled not only by the presence or absence of the compound to be assimilated (a specific control response) but also by several global regulatory proteins that link the induction of the pathway genes to the physiological status of the cell (a global control response). Global control is usually dominant over the specific control. In pseudomonads, this kind of global control has been studied for some pathways responsible for the assimilation of sugars, amino acids, hydrocarbons, and aromatic compounds (for reviews, see references 8, 10, 33, and 35). Although the molecular mechanisms responsible for these global regulatory processes are still not well understood, it is clear that there are several factors involved. Which global regulator, or combinations of regulators, controls a particular catabolic pathway depends not only on the signal to be transmitted but also on the characteristics of the promoters and of the specific transcriptional regulators of the pathway (33, 35). The signals sensed include nutrient or oxygen availability and the presence of alternative carbon sources in addition to that assimilated by the pathway considered. The factors involved include the alarmone (p)ppGpp (7,37,39), integration host factor (38, 40), components of the electron carbon chain (12,13,32), the FtsH chaperone/protease (6), and the Crc protein (18,25,29,45).Among these factors, Crc (catabolite repression control) is a master regulat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.