The coronary artery calcium score is considered the most useful marker for predicting coronary events. The high score reflects heavy calcification in the vessel, which is more challenging to treat with the percutaneous intervention (PCI). To prepare this type of heavily calcified lesion intravascular lithotripsy (IVL) technology can be used prior to PCI, which is based on the concept of converting electrical energy into mechanical energy. It harmlessly and selectively disrupts both the shallow and deep deposits of calcium. The balloonbased catheters of this system emit sonic waves that transfer to the adjacent tissue resulting in improvement in vessel compliance with the slightest soft tissue loss. Therefore, making the treatment of calcified lesions more feasible, effective, and also simplify complex lesions. The lesions considered for lithotripsy-enhanced balloon dilation include calcified coronary lesions and peripheral vasculature lesions. This article reviews the use of IVL in calcified coronary artery disease, its advantages, and disadvantages while comparing it with other techniques like high-pressure balloons and rotational atherectomy devices. A thorough search of databases like PubMed and Google Scholar was performed, which uncovered 35 peer review articles. Keywords utilized in the data search were calcified coronary artery disease, coronary lithotripsy, calcification, and calcified atherosclerotic plaque. According to rotational atherectomy and intravascular lithotripsy trials, the latter was safer, mainly by decreasing atheromatous embolization risk. Deciphering these studies, it seems like IVL is better at parameters like procedural and clinical success rate, acute lumen gain, and less residual stenosis except in-hospital major adverse cardiovascular events (MACE), which was better in rotational atherectomy (RA). However, when lesion crossings are present, the atherectomy technique is still considered as first-line therapy. In clinical practice, despite these encouraging data for treating calcified lesions, IVL is grossly underutilized because of substantial costs and perceived significant procedural risk effects on the cardiac rhythm like causing 'shock topics' and asynchronous cardiac pacing. More longer-term clinical data and extensive researches are required to validate its safety and efficiency.
Armenta-Quiroga et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Aging is defined as progressive physiological alterations in an organism that lead to senescence. In response to stress, when proliferative-competent cells undergo permanent, irreversible growth arrest (like replicative dividing limit, oncogene activation, oxidative stress, or deoxyribonucleic acid (DNA) damage), it is termed as cellular senescence. Biomarkers p53, telomerase, and other inflammatory cytokines have a vital link with senescence, and directed use of these markers might be useful in manipulating cancer and the aging process. We included studies related to topics ' accelerated aging due to cancer', telomerase's relation to Aging and Cancer, p53's relation to Aging and Cancer, Atherosclerosis and Cancer from Search databases like PubMed and Google Scholar. We relied on peer-reviewed articles and included literature from the last 10 years written in the English language. Degenerative diseases in humans are usually linked to atherosclerosis, and atherosclerosis is associated with short leukocyte telomere length. Cancer itself and its treatment are linked with accelerated aging by causing progressive shortening of telomeres during cell replication, resulting in cell death. Gene p53 is known to have a dual effect that works as a tumor suppressor and has pro-aging side effects. In experimental studies, when p53 overcomes multiple regulatory mechanisms controlling its activity, then only the pro-aging side effects of p53 manifested. This might be a potential key for treating cancer without causing the side-effects of aging. In this review, we aim to explain and summarize the interdependent nature of p53, telomeres, and other conventional mechanisms of aging and cancer like inflammation, oxidative stress, uncontrolled proliferation, angiogenesis, micro ribonucleic acids (RNAs), and apoptosis, with a more synergistic approach that can help in developing new therapeutics and play a potential role in shaping modern human lifespan and revolutionize cancer treatment.
Multiple myeloma (MM) is a hematological malignancy characterized by renal insufficiency, bone lesions, anemia, and hypercalcemia. In this modern era of medicine, even with the development of drugs like immunomodulatory agents (IMiDs) and proteasome inhibitors (PI), the treatment of MM prevails as a challenge. However, even after the attainment of total remission, relapse of MM and disease progression is frequent. That is why there is an urgent requirement to develop novel monoclonal antibody drugs. The latest drugs for the treatment of relapsed and refractory MM (RRMM) approved by the Food and Drug Administration (FDA) are elotuzumab and daratumumab. In this article, we will discuss daratumumab with different combination therapies. The literature exploration was done using PubMed, Medline, PubMed Central, and Research Gate. Keywords used to search are monoclonal antibodies, daratumumab, RRMM, and novel agents. Our review article, which includes 21 relevant articles, demonstrated that daratumumab in different combinations showed significant progression-free survival (PFS) without severe safety concerns. However, while observing all the studies, neither of them studied the combination therapies of daratumumab in end-stage renal disease (ESRD) patients. Hence, more randomized controlled clinical trials should be done to understand and compare the effect of the combination of daratumumab with the standard of care therapies in ESRD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.