We have performed the characterization of the adhesion profile, biofilm formation, cell surface hydrophobicity (CSH) and antifungal susceptibility of 184 Candida clinical isolates obtained from different human reservoirs. Adhesion was quantified using a flow cytometric assay and biofilm formation was evaluated using two methodologies: XTT and crystal violet assay. CSH was quantified with the microbial adhesion to hydrocarbons test while planktonic susceptibility was assessed accordingly the CLSI protocol for yeast M27-A3 S4. Yeast cells of non-albicans species exhibit increased ability to adhere and form biofilm. However, the correlation between adhesion and biofilm formation varied according to species and also with the methodology used for biofilm assessment. No association was found between strain's site of isolation or planktonic antifungal susceptibility and adhesion or biofilm formation. Finally CSH seemed to be a good predictor for biofilm formation but not for adhesion. Despite the marked variability registered intra and inter species, C. tropicalis and C. parapsilosis were the species exhibiting high adhesion profile. C. tropicalis, C. guilliermondii, and C. krusei revealed higher biofilm formation values in terms of biomass. C. parapsilosis was the species with lower biofilm metabolic activity.
In the human fungal pathogen Candida albicans, the CUG codon is translated 97% of the time as serine and 3% of the time as leucine, which potentially originates an array of proteins resulting from the translation of a single gene. Genes encoding cell surface proteins are enriched in CUG codons; thus, CUG mistranslation may influence the interactions of the organism with the host. To investigate this, we compared a C. albicans strain that misincorporates 28% of leucine at CUGs with a wild-type parental strain. The first strain displayed increased adherence to inert and host molecules. In addition, it was less susceptible to phagocytosis by murine macrophages, probably due to reduced exposure of cell surface β-glucans. To prove that these phenotypes occurred due to serine/leucine exchange, the C. albicans adhesin and invasin ALS3 was expressed in Saccharomyces cerevisiae in its two natural isoforms (Als3p-Leu and Als3p-Ser). The cells with heterologous expression of Als3p-Leu showed increased adherence to host substrates and flocculation. We propose that CUG mistranslation has been maintained during the evolution of C. albicans due to its potential to generate cell surface variability, which significantly alters fungus-host interactions.
Despite considerable efforts, healthcare-associated infections (HAIs) continue to be globally responsible for serious morbidity, increased costs and prolonged length of stay. Among potentially preventable sources of microbial pathogens causing HAIs, patient care items and environmental surfaces frequently touched play an important role in the chain of transmission. Microorganisms contaminating such high-touch surfaces include Gram-positive and Gram-negative bacteria, viruses, yeasts and parasites, with improved cleaning and disinfection effectively decreasing the rate of HAIs. Manual and automated surface cleaning strategies used in the control of infectious outbreaks are discussed and current trends concerning the prevention of contamination by the use of antimicrobial surfaces are taken into consideration in this manuscript.
The microbicidal activity of cerium nitrate and LMWC was clearly demonstrated in this study, as was their fungistatic effect at lower concentrations. Hamamelitannin significantly reduced biofilm metabolic activity of all tested bacteria. These microbial inhibitors may play a promising role regarding different biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.