The anaesthetic effect of camphor (Cinnamomum camphora), clove (Syzygium aromaticum) and mint (Mentha arvensis) essential oils on clown anemonefish, Amphiprion ocellaris (Cuvier 1830) AbstractThe aim of this study was to evaluate the use of clove (Syzygium aromaticum), camphor (Cinnamomum camphora) and mint (Mentha arvensis) essential oils as anaesthetics during the management of clown anemonefish (Amphiprion ocellaris). For 15 min, the animals were subjected to concentrations of 5, 10, 20, 27 and 35 lL L À1 of clove oil, 17, 35, 50, 70 and 100 lL L À1 of mint oil, and 200, 400, 500, 550 and 600 lL L À1 of camphor oil (tested in 10 animals per concentration). A control group (without anaesthetic) and a complementary group, which was exposed to ethanol, were also evaluated. After exposure to the anaesthetic, the fish were transferred to clean water to assess recovery. The mortality and feeding behaviour of the fish were then observed for 48 h after exposure to the oils. All of the essential oils produced an anaesthetic effect on A. ocellaris. The 27, 70 and 500 lL L À1 concentrations of clove, mint, and camphor oils promoted surgical anaesthesia after 310.5, 312.0, and 535.0 s (medians) respectively. The recovery times of fish exposed to these same concentrations were 396, 329.5 and 229 s respectively. The decision of which oil to use is dependent on the management situation and the consideration of the induction and recovery times of each essential oil.
In this study were evaluated the anaesthesia and analgesic effects of clove Eugenia caryophyllata, tea tree Melaleuca alternifolia and basil Ocimum basilicum essential oils (EO) during handling of yellowtail clownfish Amphiprion clarkii. Juveniles (3.70 ± 0.75 cm and 1.03 ± 0.50 g; mean ± standard deviation) were submitted to concentrations of tea tree oils (n=10/concentration), previously defined in pilot tests. Individually and only once, fish from each treatment were placed in a glass recipient containing 1 L of seawater at a temperature of 25 °C, salinity of 35 g L -1 and the specific concentration of diluted EO (stock solution). Control (only seawater) and blank (seawater and ethanol at the highest concentration used to dilute the oils) treatments were also conducted. After reaching the stage of surgical anaesthesia, fish were submitted to biometry and a sensibility test. After that, they were transferred to clean seawater for anaesthesia recovery. The times of induction needed to reach each anaesthesia stage and anaesthesia recovery were recorded. Animals were observed for 72 hours after the procedures. All the EO provoked anaesthesia and analgesic effects in A. clarkii, but basil oil is not recommended because it caused involuntary muscle contractions and mortality in 100% and 12% of fish, respectively. The lower concentrations that promote suitable induction and recovery times are 50 µl L -1 of clove oil and 500 µl L -1 of tea tree oil. However, due to its complementary high analgesic efficiency, clove oil is recommended as the ideal anaesthetic for A. clarkii. , 500 e 600 µl L -1 de melaleuca (n=10/concentração), previamente definidas em testes pilotos. Individualmente e somente uma vez, os peixes de cada tratamento foram colocados em recipiente de vidro contendo 1 L de água salgada, em temperatura de 25 °C, salinidade de 35 g L -1 e a concentração específica de OE diluída (solução estoque). Tratamentos controle (apenas água marinha) e branco (água marinha e a maior concentração de etanol utilizada para diluição dos óleos) também foram conduzidos. Após atingirem o estágio de anestesia cirúrgica, os peixes foram submetidos à biometria e teste de sensibilidade. Em seguida, foram transferidos para água marinha limpa. Os tempos necessários para atingir cada estágio anestésico e recuperação foram registrados. Os animais foram observados por 72 horas após os procedimentos. Todos os OE provocaram anestesia e analgesia em A. clarkii, porém o óleo de manjericão não é recomendado, pois causou contrações musculares involuntárias e mortalidade em 100% e 12% dos animais, respectivamente. As menores concentrações que promovem indução anestésica e recuperação em tempos adequados são 50 µl L -1 de óleo de cravo e 500 µl L -1 de óleo de melaleuca. Entretanto, devido à sua alta eficiência analgésica complementar, o óleo de cravo é recomendado como o anestésico ideal para A. clarkii. Keywords
The aim of this study was to develop and test a tilapia on-farm welfare assessment protocol, based on Brazilian semi-intensive production systems. The study included two mains steps: the elaboration of tilapia welfare protocol and its on-field feasibility test. The protocol, including the potential indicators organized into health, environmental, nutritional, and behavioral categories, was tested on three farms. Skin, eyes, gills, jaws, fins, and vertebral spine were individually examined in 139 individual tilapias. Water physicochemical parameters and production system were considered. The overall nutritional status of individuals was assessed through body condition factor, feed conversion ratio, feed crude protein ratio, and feed ingestion behavior. During massive capture, signals of stress, level of crowding, and duration of air exposure were registered. Time required for loss of consciousness was evaluated by clinical reflexes and other behaviors during slaughter. Eye, jaw, and gill scores were different across farms (Kruskal-Wallis test, p = 0.011; 0.015; 0.043, respectively), showing good discrimination power. Critical welfare points were extremely low dissolved oxygen in water, fin and skin lesions, prolonged air exposure during pre-slaughter handling and non-humane slaughter techniques, as decapitation or asphyxia. The protocol presents practical viability and it is an initial step for the development of a tilapia welfare strategy, where the prioritization of critical welfare points, implementation of corrective actions and monitoring of the results is part of a permanent welfare management system.
Animal welfare is an issue of increasing importance in global aquaculture. However, the incorporation of this issue into routine aquaculture operations is a challenge. A possible path to change this is the recognition, identification and addressing of the ecological, physiological, nutritional, behavioural and psychological needs of fish. The present study uses grass carp (Ctenopharyngodon idella), the world's most widely produced fish species, and earth ponds, the world's most widely used production system in fish farming worldwide, as the basis for developing indices to assess and monitor the welfare of farmed fish. The proposed indices were structured based on specific welfare indicators, reference values, individual weights and associated scores to address the Animal Welfare Five Freedoms and a Life Worth living concepts. Two types of indices were proposed: (1) partial welfare indices (PWIx), specific to each of the four observed/analysed freedoms; (2) general welfare index (GWI), which simultaneously summarizes the addressees' freedoms in a single variable. Both indices range from 0 (critical welfare impairment) to 1.0 (minimal risk of welfare impairment). The study was based on a comprehensive systematic review of the literature using the PRISMA method. The proposed indices were based on 10 environmental indicators, nine indicators for health, five for nutrition and four for behaviour. The PWIx can be used to determine how each category of indicators contributes to the GWI, which defines the level of fish farm welfare at a given point in time and which needs are affected or met during a production cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.