Tagoro, the youngest submarine volcano of the Canary Islands, erupted in 2011 South of El Hierro Island. Pre-existing sea floor and inhabiting biological communities were buried by the newly erupted material, promoting the appearance of new habitats. The present study pursues to describe the first metazoans colonizing different new habitats formed during the eruption and to create precedent on this field. Through dredge and remote operated vehicle samplings, five main habitat types have been detected based on the substrate type and burial status after the eruption. Inside the Tagoro volcanic complex (TVC), two new habitats are located in and around the summit and main craters—hydrothermal vents with bacterial mats and sulfurous-like fields mainly colonized by small hydrozoan colonies. Two other habitats are located downslope the TVC; new hard substrate and new mixed substrate, holding the highest biodiversity of the TVC, especially at the mixed bottoms with annelids (Chloeia cf. venusta), arthropods (Monodaeus couchii and Alpheus sp.), cnidarians (Sertularella cf. tenella), and molluscs (Neopycnodonte cochlear) as the first colonizers. An impact evaluation was done comparing the communities of those habitats with the complex and well-established community described at the stable hard substrate outside the TVC, which is constituted of highly abundant hydrozoans (Aglaophenia sp.), antipatharians (Stichopates setacea and Antipathes furcata), and colonizing epibionts (e.g., Neopycnodonte cochlear). Three years after the eruption, species numbers at Tagoro were still low compared to those occurring at similar depths outside the TVC. The first dominant species at the TVC included a large proportion of common suspension feeders of the circalittoral and bathyal hard bottoms of the area, which could have exploited the uncolonized hard bottoms and the post eruptive fertilization of water masses.
Sea spray aerosol (SSA) formation plays a major role in the climate system. The Antarctic Peninsula (AP) is affected by the greatest warming occurring in the Southern Ocean; changes in cryospheric and biological processes are being observed. Whilst there is some evidence that organic material produced by ice algae and/or phytoplankton in the high Arctic contributes to SSA, less is known about Antarctic Sea ice (sympagic) regions. To gain insight into the influence of Antarctic Sea ice biology and biogeochemistry on atmospheric aerosol, we report simultaneous water-air measurements made by means of in situ aerosol chamber experiments. For the first time, we present a methodology showing that the controlled plunging jet aerosol chamber settings do not cause major cell disruption on the studied sea ice ecosystems. Larger sea ice phytoplankton cells (>20 µm; mainly diatoms) tend to sediment at the bottom of the chamber (during the 24h experiment) and likely have a minor role on SSA production. When comparing four chamber experiments - we find that the two producing more SSA are the ones with highest abundance of nanophytoplankton cells (<20 µm; mainly nanoflagellates) as well as viruses. Our marine biogeochemical data show two broad groups of dissolved organic carbon: one rich in carbohydrates and proteic material and one rich in humic-like substances; the latter enhancing SSA production. This work provides unique insights into sea ice productivity that modulates SSA production, with potentially significant climate impacts. Further studies of these types are advised in order to see how microbiology impacts the biogeochemical cycling of elements and how aerosols are formed and processed in cold regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.