In recent years, the interest in 3D printing of medicines has increased due to many advantages of this technology, such as flexibility of the dose and dosage form of the printed product. Fused deposition modeling (FDM) is one of the most popular 3D printing technologies in the pharmaceutical field, due to its low cost and simplicity. The subject of this review is the potential use of natural products as biodegradable and biocompatible materials with good safety profiles in FDM 3D printing of pharmaceuticals. Natural products such as alginate, chitosan and starch have already been employed as excipients in FDM 3D printed pharmaceutical dosage forms, while others like shellac and zein show the potential, but haven't yet been part of 3D printed pharmaceutical formulations. These excipients have different roles in the formulation of filaments for FDM 3D printing, for example as fillers, matrix carriers or drug-release modifiers. In addition, the possibility of incorporating active pharmaceutical ingredients of natural origin in filaments for FDM 3D printing was reviewed. High printing temperatures limit the use of natural products in FDM 3D printing. However, adequate selection of thermoplastic material and printing parameters can widen the use of natural products in FDM 3D printing of pharmaceutical dosage forms.
This study aims to find the effects of high (75%) and low (30%) humidity conditions and its correlation with formulation composition on dissolution kinetics of lamotrigine (LMT) from prepared immediate-release tablets during one- and four-week periods. Two types of fillers microcrystalline cellulose (MCC) or anhydrous lactose (LAC), disintegrant sodium starch glycolate (NaSG, 0.5% or 4%), and lubricant magnesium stearate (MgST, 0.25% or 5%) were used. A three-factor two-stage complete factorial design (2³) was used to assess the influence of the composition of the tested formulations. The tablets were produced by direct compression and characterized using a disintegration test, a resistance to crushing test, and dissolution tests (pH 1.2 and pH 6.8). Using Design Expert software, it was concluded that in addition to the effect of fillers on pH 6.8, NaSG has a significant impact after exposure to high and low humidity, as well as its interaction with LAC and MCC. In the dissolution medium pH 1.2, under conditions of high humidity, the content of MgST and NaSG and their interaction show a significant influence. The release rate of LMT was affected by humidity as well as type of excipients and their interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.