Tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that promotes the inhibition of mechanistic target of rapamycin (mTOR) pathway, and mutations in TSC1 lead to a rare complex disorder of the same name. Despite phenotype heterogeneity, up to 50% of TSC patients present with autism spectrum disorder (ASD). Consequently, TSC models are often used to probe molecular and behavioral mechanisms of ASD development. Amongst the different brain areas proposed to play a role in the development of ASD, the cerebellum is commonly reported to be altered, and cerebellar-specific deletion of Tsc1 in mice is sufficient to induce ASD-like phenotypes. However, despite these functional changes, whether Tsc1 haploinsufficiency affects cerebellar development is still largely unknown. Given that the mTOR pathway is a master regulator of cell replication and migration, we hypothesized that dysregulation of this pathway would also disrupt the development of cell populations during critical periods of cerebellar development. Here, we used a mouse model of TSC to investigate gene and protein expression during embryonic and early postnatal periods of cerebellar development. We found that, at E18 and P7, mRNA levels of the cerebellar inhibitory interneuron marker paired box gene 2 (Pax2) were dysregulated. This dysregulation was accompanied by changes in the expression of mTOR pathway-related genes and downstream phosphorylation of S6. Differential gene correlation analysis revealed dynamic changes in correlated gene pairs across development, with an overall loss of correlation between mTOR- and cerebellar-related genes in Tsc1 mutants compared to controls. We corroborated the genetic findings by characterizing the mTOR pathway and cerebellar development on protein and cellular levels with Western blot and immunohistochemistry. We found that Pax2-expressing cells were largely unchanged at E18 and P1, while at P7, their number was increased and maturation into parvalbumin-expressing cells delayed. Our findings indicate that, in mice, Tsc1 haploinsufficiency leads to altered cerebellar development and that cerebellar interneuron precursors are particularly susceptible to mTOR pathway dysregulation.
Tuberous sclerosis complex 1 (TSC1) is a tumour suppressor gene that inhibits the mechanistic target of rapamycin (mTOR) pathway. Mutations in TSC1 lead to a rare complex disorder of the same name, in which up to 50% of patients present with autism spectrum disorder (ASD). ASD is a highly prevalent, early-onset neurodevelopmental disorder, characterized by social deficits and repetitive behaviours, although the type and severity of symptoms show wide variability across individuals. Amongst different brain areas proposed to play a role in the development of ASD, the cerebellum is commonly reported to be altered, and cerebellar-specific deletion of Tsc1 in mice is sufficient to induce an ASD-like phenotype. Given that the mTOR pathway is crucial for proper cell replication and migration, this suggests that dysregulation of this pathway, particularly during critical phases of cerebellar development, could contribute to the establishment of ASD. Here, we used a mouse model of TSC to investigate gene and protein expression during embryonic and early postnatal periods of cerebellar development. We found that, at E18 and P7, mRNA levels of the cerebellar inhibitory interneuron marker Pax2 were dysregulated. This was accompanied by changes in the expression of mTOR pathway-related genes and downstream phosphorylation of S6. Differential gene correlation analysis revealed dynamic changes in correlated gene pairs across development, with an overall loss of correlation between mTOR- and cerebellar-related genes in Tsc1 mutants compared to controls. We corroborated the genetic findings by characterizing the mTOR pathway and cerebellar development on protein and cellular levels with Western blot and immunohistochemistry. We found that Pax2-expressing cells were hypertrophic at E18 while, at P7, their number was increased and maturation into parvalbumin-expressing cells delayed. Our findings indicate that E18 and P7 are crucial time points in cerebellar development in mice that are particularly susceptible to mTOR pathway dysregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2025 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.