The multiplicity problem of limit cycles arising from a weak focus is addressed. The proposed methodology is a combination of the frequency domain method to handle some degenerate Hopf bifurcations with the powerful tools of the singularity theory. The frequency domain approach uses the harmonic balance method to study the existence of periodic solutions. On the other hand, the singularity theory provides the conditions and formulas for the classification problem of the unfolding of the singularity in terms of the distinguished and auxiliary parameters. A classical example introduced by Bautin is shown in which the multiplicity of limit cycles is recovered by using this type of hybrid methodology and standard software in the continuation of periodic solutions (LOCBIF and XPPAUT). For small amplitude limit cycles, the proposed methodology gives accurate results.
Techniques are developed to find all periodic solutions in the simple pendulum by means of the homotopy analysis method (HAM). This involves the solution of the equations of motion in two different coordinate representations. Expressions are obtained for the cycles and periods of oscillations with a high degree of accuracy in the whole range of amplitudes. Moreover, the convergence of the method is easily checked. The aim of this work is to show how the dynamics of a simple example of oscillatory systems may be studied globally with the HAM and to incentivize the interest of advanced undergraduate students in this type of techniques.
We investigate the mechanisms responsible for the generation of oscillations in mutually inhibitory cells of non-oscillatory neurons and the transitions from non-relaxation (sinusoidal-like) oscillations to relaxation oscillations. We use a minimal model consisting of a 2D linear resonator, a 1D linear cell and graded synaptic inhibition described by a piecewise linear sigmoidal function. Individually, resonators exhibit a peak in their response to oscillatory inputs at a preferred (resonant) frequency, but they do not show intrinsic (damped) oscillations in response to constant perturbations. We show that network oscillations emerge in this model for appropriate balance of the model parameters, particularly the connectivity strength and the steepness of the connectivity function. For fixed values of the latter, there is a transition from sinusoidal-like to relaxation oscillations as the connectivity strength increases. Similarly, for fixed connectivity strength values, increasing the connectivity steepness also leads to relaxation oscillations. Interestingly, relaxation oscillations are not observed when the 2D linear node is a damped oscillator. We discuss the role of the intrinsic properties of the participating nodes by focusing on the effect that the resonator’s resonant frequency has on the network frequency and amplitude.
Abstract. In this work we study local oscillations in delay differential equations with a frequency domain methodology. The main result is a bifurcation equation from which the existence and expressions of local periodic solutions can be determined. We present an iterative method to obtain the bifurcation equation up to a fixed arbitrary order. It is shown how this method can be implemented in symbolic math programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.