Photodynamic inactivation (PDI) protocols using photoactive metallated porphyrin-doped conjugated polymer nanoparticles (CPNs) and blue light were developed to eliminate multidrug-resistant pathogens. CPNs-PDI protocols using varying particle concentrations and irradiation doses were tested against nine pathogenic bacterial strains including antibiotic-resistant bacteria of the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens group. The bactericidal effect was achieved in methicillin-resistant Staphylococus aureus (S. aureus) strains using low light doses (9.6−14.4 J/cm 2 ), while Gram-negative bacteria required a higher light dose (28.8 J/ cm 2 ). The bacteria−CPN interaction was studied through flow cytometry, taking advantage of the intrinsic CPN fluorescence, demonstrating that CPNs efficiently bind to the bacterial envelope. Finally, the performance of CPNs-PDI was explored in biofilms; good antibiofilm ability and almost complete eradication were observed for S. aureus and Escherichia coli biofilms, respectively, using confocal microscopy. Overall, we demonstrated that CPNs-PDI is an efficient tool not only to kill superbugs as sessile cells but also to disrupt and eradicate biofilms of highly relevant pathogenic bacterial species.
Energy transfer (ET) in conjugated polymer nanoparticles (CPNs) is a critical process that affects the performance of these materials in diverse applications such as biological−chemical− physical sensing, imaging, photovoltaics, and phototherapy. Herein, we performed an in-depth study of ET in the CPNs of poly(9,9dioctylfluorene-altbenzothiadiazole) (F8BT) superficially doped with well-controlled amounts of rhodamine B (RhB) dye using a combined experimental and theoretical approach. In these particles, the conjugated polymer acts as the excitation energy donor, whereas adsorbed dye molecules and non-emissive quenching defect sites (Q) act as energy acceptors. Fitting of simulated polymer emission to experimental data provided the intrinsic exciton diffusion length (L d = 8.6 nm) of the polymer and the mean number of quenching defects per particle ρ = × − ( 1.56 10 defects/nm ) Q 2 2 . Importantly, results provide for the first time sound evidence indicating that quenching defect centers are superficially, rather than volumetrically, distributed in these CPNs. The so-called antenna effect (AE), a parameter frequently used to characterize the ET process in donor−acceptor multichromophoric systems, was also calculated. The AE in these CPNs takes a maximum value of ∼40, which compares well with the values reported for similar systems. The developed model (and associated computational Python code) represents a significant improvement over previous models/codes by correcting inconsistencies and successfully simulating ET processes in dye-doped CPNs taking into account: exciton diffusion, ET to nonemissive quenching defect centers, ET to dye dopants, spatial distribution of dyes and defects within CPNs, and individual particle excitation probability among other parameters. The model calculates the ensemble-averaged, time-resolved, and time-averaged emission intensity of CPNs and dye dopants for specific CPN size distributions, allowing for direct comparison with experimental bulk measurements. We envisage that the presented improvements in both the theoretical model and the experimental strategy will prove useful in the study and design of new dye-doped CPNs for practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.