Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries . Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade À1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species' phenology is responsive to temperature of the preceding
The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 "Establishing a European phenological data platform for climatological applications" working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/ . Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.
Long-term changes of plant phenological phases determined by complex interactions of environmental factors are in the focus of recent climate impact research. There is a lack of studies on the comparison of biogeographical regions in Europe in terms of plant responses to climate. We examined the flowering phenology of plant species to identify the spatio-temporal patterns in their responses to environmental variables over the period 1970-2010. Data were collected from 12 countries along a 3000-km-long, North-South transect from northern to eastern Central Europe.Biogeographical regions of Europe were covered from Finland to Macedonia. Robust statistical methods were used to determine the most influential factors driving the changes of the beginning of flowering dates. Significant species-specific advancements in plant flowering onsets within the Continental (3 to 8.3 days), Alpine (2 to 3.8 days) and by highest magnitude in the Boreal biogeographical regions (2.2 to 9.6 days per decades) were found, while less pronounced responses were detected in the Pannonian and Mediterranean regions. While most of the other studies only use mean temperature in the models, we show that also the distribution of minimum and maximum temperatures are reasonable to consider as explanatory variable. Not just local (e.g. temperature) but large scale (e.g. North Atlantic Oscillation) climate factors, as well as altitude and latitude play significant role in the timing of flowering across biogeographical regions of Europe. Our analysis gave evidences that species show a delay in the timing of flowering with an increase in latitude (between the geographical coordinates of 40.9 and 67.9), and an advance with changing climate. The woody species (black locust and small-leaved lime) showed stronger advancements in their timing of flowering than the herbaceous species (dandelion, lily of the valley). In later decades (1991-2010), more pronounced phenological change was detected than during the earlier years (1970-1990), which indicates the increased influence of human induced higher spring temperatures in the late twentieth century.
(1) , Primož Simončič (1) Reliable phenological observations are important for studying the response of trees to climate and climate change. National phenological networks were not specifically established to monitor tree phenology within forests, yet they are often used to generalise tree phenological phases at national or regional scales. Our objective was to investigate whether a phenological monitoring network using trees in open areas can accurately predict phenology of European beech (Fagus sylvatica L.) located within forests by using two models: one with correlates of environmental variables and one with interpolated monthly air temperature and sun hours. The first leaf unfolding, general leaf colouring and leaf fall dates from 2004 through 2010 were modelled using data from 47 Slovene National Phenology Network (NPN) stations in open areas and tested on phenological observations within forests using data from the UNECE CRLTAP ICP Forests network. Good agreement was found between predicted and observed first leaf unfolding in the forest, while slightly lower agreement was detected for general leaf colouring and leaf fall. Suggestions for the improvement of national phenological network are discussed in order to better predict beech phenology in forest habitats.
Phenological events are good indicators of the effects of climate change, since phenological phases are sensitive to changes in environmental conditions. Although several national phenological networks monitor the phenology of different plant species, direct observations can only be conducted on individual trees, which cannot be easily extended over large and continuous areas. Remote sensing has often been applied to model phenology for large areas, focusing mostly on pure forests in which it is relatively easier to match vegetation indices with ground observations. In mixed forests, phenology modelling from remote sensing is often limited to land surface phenology, which consists of an overall phenology of all tree species present in a pixel. The potential of remote sensing for modelling the phenology of individual tree species in mixed forests remains underexplored. In this study, we applied the seasonal midpoint (SM) method with MODIS GPP to model the start of season (SOS) and the end of season (EOS) of six different tree species in Slovenian mixed forests. First, substitute locations were identified for each combination of observation station and plant species based on similar environmental conditions (aspect, slope, and altitude) and tree species of interest, and used to retrieve the remote sensing information used in the SM method after fitting the best of a Gaussian and two double logistic functions to each year of GPP time series. Then, the best thresholds were identified for SOS and EOS, and the results were validated using cross-validation. The results show clearly that the usual threshold of 0.5 is not best in most cases, especially for estimating the EOS. Despite the difficulty in modelling the phenology of different tree species in a mixed forest using remote sensing, it was possible to estimate SOS and EOS with moderate errors as low as <8 days (Fagus sylvatica and Tilia sp.) and <10 days (Fagus sylvatica and Populus tremula), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.