Background The effects of safflower oil and vitamin C (Vit. C) inclusion in broiler chicken diets on the growth performance, apparent ileal digestibility coefficient “AID%” of amino acids, intestinal histology, behavior, carcass traits, fatty acid composition of the breast muscle, antioxidant and immune status for a 35-day feeding period were evaluated. A total of 300 three-day-old Ross chicks (58.25 g ± 0.19) were randomly allotted in a 2 × 3 factorial design consisting of two levels of vitamin C (0 and 400 mg/kg diet) and three levels of safflower oil (0, 5, and 10 g/kg diet). Results An increase in the final body weight, total body weight gain, total feed intake, and the relative growth rate (P < 0.05) were reported by safflower oil and vitamin C inclusion. Dietary supplementation of safflower oil and vitamin C had a positive effect (P < 0.05) on the ingestive, resting, and feather preening behavior. Vitamin C supplementation increased (P < 0.05) the AID% of lysine, threonine, tryptophan, arginine, and valine. Safflower inclusion (10 g/kg) increased (P < 0.05) the AID% of methionine and isoleucine. Safflower oil inclusion increased (P < 0.05) the levels of stearic acid, linoleic acid, saturated fatty acids, and omega-3 fatty acids (ω-3) in the breast muscle. In contrast, the supplementation of only 10 g of safflower oil/kg diet increased (P = 0.01) the omega-3/omega-6 (ω-3/ω-6) fatty acids ratio. Vit. C supplementation increased (P < 0.05) the CAT serum levels, SOD, and GSH enzymes. Dietary supplementation of safflower oil and vitamin C improved the intestinal histology. They increased the villous height and width, crypt depth, villous height/crypt depth ratio, mucosal thickness, goblet cell count, and intra-epithelium lymphocytic lick cell infiltrations. The serum levels of IgA and complement C3 were increased (P < 0.01) by Vit. C supplementation and prominent in the 400 vit. C + 10 safflower Oil group. Conclusion A dietary combination of safflower oil and vitamin C resulted in improved growth rate, amino acids AID%, intestinal histology, welfare, immune and antioxidant status of birds, and obtaining ω-3 and linoleic acid-enriched breast muscles. The best inclusion level was 400 vit. C + 10 safflower Oil.
The aim of this study was to investigate the effect of dietary supplementation with different sources of selenium and/or organic chromium on the growth performance, digestibility, lipid profile, and mineral content of hair, liver, and fore and hind limb of growing rabbits. A total of 150 weanling New Zealand White (NZW) male rabbits were randomly allotted to six dietary treatment groups: (1) basal diet (control group), (2) basal diet + 0.6 mg sodium selenite/kg diet, (3) basal diet + 0.6 mg selenium yeast/kg diet, (4) basal diet + 0.3 mg sodium selenite/kg diet + 0.3 mg selenium yeast/kg diet, (5) basal diet + 0.6 mg chromium yeast/kg diet + 0.6 mg selenium yeast/kg diet, (6) basal diet + 0.6 mg chromium yeast/kg diet. Only the combination between inorganic and organic selenium led to significant improvement in body weight, body weight gain, and feed conversion ratio. Carcass traits were not different in all groups. Selenium (Se) and chromium (Cr) were deposited in the tissues of rabbits fed diets supplemented with Se and Cr, respectively. Blood serum in both of selenium- and chromium-supplemented groups showed declined total cholesterol, triglycerides, and low-density lipoprotein (LDL). Group supplemented with organic chromium showed higher high-density lipoprotein (HDL) than the other groups. It could be concluded that using a mixture of inorganic and organic Se has a positive effect on the growth performance of growing rabbits. Both Se and Cr have hypocholesterolemic effect. Both of Se and Cr can be deposited in the meat and other tissues of rabbits and that improves meat quality which positively reflects on human acceptance. The combination between inorganic (0.3 mg sodium selenite/kg diet) and organic selenium (0.6 mg selenium yeast/kg diet) improved growth performance traits of growing rabbits.
Background Poultry feed consists mainly of conventional grains and protein supplements, however, using treated unconventional agro-industrial by-products as replacements of corn soybean-based diet can minimize production costs and improve productivity. Therefore, in this study, the effects of fermented or enzymatically treated dried brewer grains (DBG) on growth, expression of digestive enzymes and nutrient transporters genes and the profitability of the rations were evaluated. A total of 1600 one-day-old Ross 308 broiler chicks were randomly distributed in 2 × 4 factorial arrangement (eight treatments with ten replicates, 20 birds/replicate). Experimental diets included two controls; negative control (basal corn-soybean diet; NC) and positive control (basal corn-soybean diet with exogenous enzymes; PC), and six diets in which basal diet was replaced by three levels of fermented DBG (FDBG; 5, 10 or 15%), or enzyme-treated DBG (DBG 5, 10 or 15%+Enz), for 38 days. Results The results described that feeding FDBG (three levels) or DBG5%+Enz improved (P < 0.05) BW gain and feed efficiency of broilers. Also, feeding FDBG10% yielded the best improvement in weight gain (10%), compared to NC group. Increasing the inclusion levels of DBG either fermented or enzymatically treated up-regulated (p < 0.01) expression of digestive-genes in proventriculus (PGC and PGA5, range 1.4–1.8 fold), pancreas (AMY2A, PNLIP, CELA1, and CCK; range 1.2–2.3 fold) and duodenum (CAT1, CAT2, GLUT1, GLUT2, LAT1, Pep1; range 1.3-3 fold) when compared to NC group. Feeding treated DBG significantly increased (p < 0.05, range 4.5–13.6%) gizzard relative weight compared to NC and PC groups. An additional benefit was lower (p < 0.01) cholesterol content from 66.9 mg/100 mg (NC) to 62.8 mg/100 mg (FDBG5 or 10%) in thigh meat. Furthermore, the least cost feed/kg body gain was achieved in FDBG10% and DBG5%+Enz groups, with approx. 16% reduction compared to NC cost, leading to increasing the income gross margin by 47% and 40% in FDBG10% and DBG5%+Enz groups, respectively. Conclusions Substitution of corn-soybean based diet with 10% FDBG or 5% DBG+Enz resulted in better growth and higher economic efficiency of broilers chickens.
This study investigated the dietary effect of Spirulina platensis phycocyanin (SPC) on growth performance (body weight (BW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR)) at starter, grower, and finisher stages, intestinal histomorphology, serum biochemical parameters, inflammatory and antioxidant indices, and proinflammatory cytokines (tumor necrosis factor-α and caspase-3) immune expression in broiler chickens. In total, 250 one-day-old chicks (Ross 308 broiler) were randomly allotted to five experimental groups (5 replicates/group, 10 chicks/replicate) and fed basal diets supplemented with five levels of SPC (0, 0.25, 0.5, 0.75, and 1 g kg–1 diet) for 35 days. Compared with SPC0 treatment, different SPC levels increased the overall BW and BWG without affecting the total feed consumption. However, the FCR decreased linearly with an increase in supplementation level. The serum levels of total proteins, albumin, globulins, and growth hormone increased linearly by increasing levels of SPC supplementation. Further, SPC supplementation increased the thyroxin hormones without affecting serum glucose and leptin levels. Serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) values decreased in broilers fed SPC0.250 and SPC1 diets. Triglycerides (TG) decreased in SPC0.25-, SPC0.75-, and SPC1-treated groups. Though antioxidant enzyme activities (total antioxidant capacity, catalase, and superoxide dismutase) increased linearly and quadratically, malondialdehyde (MDA) decreased linearly by increasing the SPC level. There was no effect on serum proinflammatory cytokines IL1β levels. Immunolabelling index of caspase-3 and tumor necrosis factor-α (TNF-α) were downregulated by SPC supplementation. The intestinal histomorphology is represented by increased villus height, the villus height to crypt depth ratio, and numbers of goblet cells in different sections of the small intestine. In conclusion, SPC supplementation is beneficial in broiler chicken diets due to its growth-promoting, antioxidant, and anti-inflammatory properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.