Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naïve or previously infected volunteers. By 21 days after receiving the first dose of vaccine, 94% of naïve participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus neutralizing capacity in previously infected individuals than in naïve ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naïve participants suggests a benefit of delaying second dose administration to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.
Background Expression of the neuronal membrane glycoprotein M6a (GPM6A), the proteolipid protein (PLP/DM20) family member, is downregulated in the hippocampus of chronically stressed animals. Its neuroplastic function involves a role in neurite formation, filopodium outgrowth and synaptogenesis through an unknown mechanism. Disruptions in neuroplasticity mechanisms have been shown to play a significant part in the etiology of depression. Thus, the current investigation examined whether GPM6A expression is also altered in human depressed brain. Methods Expression levels and coexpression patterns of GPM6A, GPM6B, and PLP1 (two other members of PLP/DM20 family) as well as of the neuroplasticity-related genes identified to associate with GPM6A were determined using quantitative polymerase chain reaction (qPCR) in postmortem samples from the hippocampus (n =18) and the prefrontal cortex (PFC) (n= 25) of depressed suicide victims and compared with control subjects (hippocampus n= 18; PFC n =25). Neuroplasticity-related proteins that form complexes with GPM6A were identified by coimmunoprecipitation technique followed by mass spectrometry. Results Results indicated transcriptional downregulation of GPM6A and GPM6B in the hippocampus of depressed suicides. The expression level of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) and coronin1A (CORO1A) was also significantly decreased. Subsequent analysis of coexpression patterns demonstrated coordinated gene expression in the hippocampus and in the PFC indicating that the function of these genes might be coregulated in the human brain. However, in the brain of depressed suicides this coordinated response was disrupted. Conclusions Disruption of coordinated gene expression as well as abnormalities in GPM6A and GPM6B expression and expression of the components of GPM6A complexes were detected in the brain of depressed suicides.
Stress-responsive neuronal membrane glycoprotein M6a (Gpm6a) functions in neurite extension, filopodium and spine formation and synaptogenesis. The mechanisms of Gpm6a action in these processes are incompletely understood. Previously, we identified the actin regulator coronin-1a (Coro1a) as a putative Gpm6a interacting partner. Here, we used co-immunoprecipitation assays with the anti-Coro1a antibody to show that Coro1a associates with Gpm6a in rat hippocampal neurons. By immunofluorescence microscopy, we demonstrated that in hippocampal neurons Coro1a localizes in F-actin-enriched regions and some of Coro1a spots co-localize with Gpm6a labeling. Notably, the over-expression of a dominant-negative form of Coro1a as well as its downregulation by siRNA interfered with Gpm6a-induced filopodium formation. Coro1a is known to regulate the plasma membrane translocation and activation of small GTPase Rac1. We show that Coro1a co-immunoprecipitates with Rac1 together with Gpm6a. Pharmacological inhibition of Rac1 resulted in a significant decrease in filopodium formation by Gpm6a. The same was observed upon the co-expression of Gpm6a with the inactive GDP-bound form of Rac1. In this case, the elevated membrane recruitment of GDP-bound Rac1 was detected as well. Moreover, the kinase activity of the p21-activated kinase 1 (Pak1), a main downstream effector of Rac1 that acts downstream of Coro1a, was required for Gpm6a-induced filopodium formation. Taken together, our results provide evidence that a signaling pathway including Coro1a, Rac1, and Pak1 facilitates Gpm6a-induced filopodium formation. Keywords: Coronin-1a, filopodium, hippocampal neuron, membrane glycoprotein M6a, Ras-related C3 botulinum toxin substrate 1 (Rac1), rat. Abbreviations used: CA, constitutively activate; Coro1a, coronin-1a; DN, dominant negative; ECL, enhanced chemiluminescence; EGFP, enhanced green fluorescent protein; GAPs, GTPase activating proteins; GDIs, GDP dissociation inhibitors; GEFs, guanine nucleotide exchange factors; Gpm6a, neuronal membrane glycoprotein M6a; N2a, mouse neuro-2a neuroblastoma cell line; Pak1, p21-activated kinase 1; PBS, phosphate-buffered saline; Rac1, Ras-related C3 botulinum toxin substrate 1; RFP, red fluorescent protein; ROI, region of interest; SDS, sodium dodecyl sulfate; TBS, tris-buffered saline; wt, wild type. 46
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.