Approximately 2.78 Mt of coal fly ash is produced in the Philippines, with a low utilization rate. Using fly ash-based geopolymer for construction will lessen the load sent to landfills and will result in lower GHG emissions compared to OPC. It is necessary to characterize the fly ash and optimize the geopolymer components to determine if it can replace OPC for in situ applications. The activator-to-precursor ratio, the water-to-solids ratio, and the sodium hydroxide-to-sodium silicate ratio were optimized using a randomized I-optimal design from the experimental results of 21 runs with five replicates, for a total of 105 specimens of 50 mm × 50 mm × 50 mm paste cubes. The engineering properties chosen as the optimization responses were the unconfined compressive strength (UCS), the initial setting time, and the final setting time. The samples were also ambient-cured with the outdoor temperature ranging from 30 °C to 35 °C and relative humidity of 50% ± 10% to simulate the on-site environment. Runs with high unconfined compressive strength (UCS) and short setting times were observed to have a low water-to-solids (W/S) ratio. All runs with a UCS greater than 20 MPa had a W/S ratio of 0.2, and the runs with the lowest UCS had a W/S of 0.4. The initial setting time for design mixes with a W/S ratio of 0.2 ranged from 8 to 105 min. Meanwhile, five out of seven design mixes with a W/S ratio of 0.4 took longer than 1440 min to set. Specimens with an alkali activator ratio (NaOH/WG) of 0.5 (1:2) and 0.4 (1:2.5) also had significantly lower setting times than those with an alkali activator ratio of 1. The RSM model was verified through confirmatory tests. The results of the confirmatory tests are agreeable, with deviations from the expected UCS ranging from 0 to 38.12%. The generated model is a reliable reference to estimate the UCS and setting time of low-calcium FA geopolymer paste for in situ applications.
Unreinforced masonry (URM) structures are vulnerable to earthquakes; thus, materials and techniques for their strengthening and restoration should be developed. However, the materials used in some of the existing retrofitting technologies for URM and the waste produced at its end-of-life are unsustainable. The production of ordinary Portland cement (OPC) worldwide has enormously contributed to the global carbon footprint, resulting in persistent environmental problems. Replacing OPC with geopolymers, which are more sustainable and environmentally friendly, presents a potential solution to these problems. Geopolymers can replace the OPC component in engineering cementitious composites (ECC), recommended to strengthen and restore URM structures. In the present paper, the state-of-the-art knowledge development on applying geopolymers in URM structures is discussed. The discussion is focused on geopolymers and their components, material characterization, geopolymers as a strengthening and restoration material, and fiber-reinforced geopolymers and their application to URM structures. Based on this review, it was found that the mechanical properties of geopolymers are on par with that of OPC; however, there are few studies on the mentioned applications of geopolymers. The characterization of geopolymers’ mechanical and physical properties as a restoration material for URM structures is still limited. Therefore, other properties such as chemical interaction with the substrate, workability, thixotropic behavior, and aesthetic features of geopolymers need to be investigated for its wide application. The application method of geopolymer-based ECC as a strengthening material for a URM structure is by grouting injection. It is also worth recommending that other application techniques such as deep repointing, jacketing, and cement-plastering be explored.
Current research into the production of sustainable construction materials for retrofitting and strengthening historic structures has been rising, with geopolymer technology being seen as an advantageous alternative to traditional concrete. Fiber reinforcement using this novel cementitious material involves a low embodied carbon footprint while ensuring cohesiveness with local materials. This study aims to develop fly ash-based geopolymers reinforced with six different types of fibers: polyvinyl alcohol, polypropylene, chopped basalt, carbon fiber, and copper-coated stainless steel. The samples are produced by mixing the geopolymer mortar in random distribution and content. Twenty-eight geopolymer mixes are evaluated through compressive strength, split-tensile strength, and modulus of elasticity to determine the fiber mix with the best performance compared with pure geopolymer mortar as a control. Polyvinyl alcohol and copper-coated stainless-steel fiber samples had considerably high mechanical properties and fracture toughness under applied tensile loads. However, the polypropylene fiber source did not perform well and had lower mechanical properties. One-way ANOVA verifies these results. Based on these findings, polyvinyl alcohol and stainless-steel fibers are viable options for fiber reinforcement in historical structures, and further optimization and testing are recommended before application as a reinforcement material in historic structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.