Crop improvement efforts aiming at increasing crop production (quantity, quality) and adapting to climate change have been subject of active research over the past years. But, the question remains 'to what extent can breeding gains be achieved under a changing climate, at a pace sufficient to usefully contribute to climate adaptation, mitigation and food security?'. Here, we address this question by critically reviewing how model-based approaches can be used to assist breeding activities, with
Wheat (Triticum aestivum) is the most widely grown food crop in the world threatened by future climate change. In this study, we simulated climate change impacts and adaptation strategies for wheat globally using new crop genetic traits (CGT), including increased heat tolerance, early vigor to increase early crop water use, late flowering to reverse an earlier anthesis in warmer conditions, and the combined traits with additional nitrogen (N) fertilizer applications, as an option to maximize genetic gains. These simulations were completed using three wheat crop models and five Global Climate Models (GCM) for RCP 8.5 at mid-century. Crop simulations were compared with country, US state, and US county grain yield and production. Wheat yield and production from high-yielding and low-yielding countries were mostly captured by the model ensemble mean. However, US state and county yields and production were often poorly reproduced, with large variability in the models, which is likely due to poor soil and crop management input data at this scale. Climate change is projected to decrease global wheat production by −1.9% by mid-century. However, the most negative impacts are projected to affect developing countries in tropical regions. The model ensemble mean suggests large negative yield impacts for African and Southern Asian countries where food security is already a problem. Yields are predicted to decline by −15% in African countries and −16% in Southern Asian countries by 2050. Introducing CGT as an adaptation to climate change improved wheat yield in many regions, but due to poor nutrient management, many developing countries only benefited from adaptation from CGT when combined with additional N fertilizer. As growing conditions and the impact from climate change on wheat vary across the globe, region-specific adaptation strategies need to be explored to increase the possible benefits of adaptations to climate change in the future.
Crop modelling has the potential to contribute to global food and nutrition security. This paper briefly examines the history of crop modelling by international crop research centres of the CGIAR (formerly Consultative Group on International Agricultural Research but now known simply as CGIAR), whose primary focus is on less developed countries. Basic principles of crop modelling building up to a Genotype × Environment × Management × Socioeconomic (G × E × M × S) paradigm, are explained. Modelling has contributed to better understanding of crop performance and yield gaps, better prediction of pest and insect outbreaks, and improving the efficiency of crop management including irrigation systems and optimization of planting dates. New developments include, for example, use of remote sensed data and mobile phone technology linked to crop management decision support models, data sharing in the new era of big data, and the use of genomic selection and crop simulation models linked to environmental data to help make crop breeding decisions. Socio-economic applications include foresight analysis of agricultural systems under global change scenarios, and the consequences of potential food system shocks are also described. These approaches are discussed in this paper which also calls for closer collaboration among disciplines in order to better serve the crop research and development communities by providing model based recommendations ranging from policy development at the level of governmental agencies to direct crop management support for resource poor farmers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.