A major roadblock in the development of tissue engineered vascular grafts (TEVGs) is achieving construct endothelialization that is stable under physiological stresses. The aim of the current study was to validate an approach for generating a mechanically stable layer of endothelial cells (ECs) in the lumen of TEVGs. To accomplish this goal, a unique method was developed to fabricate a thin EC layer using poly(ethylene glycol) diacrylate (PEGDA) as an intercellular "cementing" agent. This EC layer was subsequently bonded to the lumen of a tubular scaffold to generate a bi-layered construct. The viability of bovine aortic endothelial cells (BAECs) through the "cementing" process was assessed. "Cemented" EC layer expression of desired phenotypic markers (AcLDL uptake, VE-cadherin, eNOS, PECAM-1) as well as of injury-associated markers (E-selectin, SM22alpha) was also examined. These studies indicated that the "cementing" process allowed ECs to maintain high viability and expression of mature EC markers while not significantly stimulating primary injury pathways. Finally, the stability of the "cemented" EC layers under abrupt application of high shear pulsatile flow (approximately 11 dyn/cm(2), P (avg) approximately 95 mmHg, DeltaP approximately 20 mmHg) was evaluated and compared to that of conventionally "seeded" EC layers. Whereas the "cemented" ECs remained fully intact following 48 h of pulsatile flow, the "seeded" EC layers delaminated after less than 1 h of flow. Furthermore, the ability to extend this approach to degradable PEGDA "cements" permissive of cell elongation was demonstrated. Combined, these results validate an approach for fabricating bi-layered TEVGs with stable endothelialization.
Oxidative steam reforming allows higher energy efficiency and lowers coke deposition compared to traditional steam reforming. In this work, CeO2-based supports have been prepared with Ni as the active phase, and they were tested in the oxidative steam reforming of acetic acid. The influence of the O2/AcOH molar ratio (0–0.3) has been evaluated over Ni/CeO2. The results stated that by increasing oxygen content in the feeding mixture, acetic acid conversion increases, too, with a decrease in coke deposition and hydrogen yield. To have a proper balance between the acetic acid conversion and the hydrogen yield, an O2/AcOH molar ratio of 0.075 was selected to study the catalytic performance of Ni catalysts over different supports: commercial CeO2, a novel mesostructured CeO2, and CeO2-SBA-15. Due to higher Ni dispersion over the support, the mesostructured catalysts allowed higher acetic acid conversion and hydrogen yield compared to the nonporous Ni/CeO2. The best catalytic performance and the lowest coke formation (120.6 mgcoke·gcat−1·h−1) were obtained with the mesostructured Ni/CeO2. This sample reached almost complete conversion (>97%) at 500 °C, maintaining the hydrogen yield over 51.5% after 5 h TOS, being close to the predicted value by the thermodynamic equilibrium that is due to the synergistic coordination between Ni and CeO2 particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.