Parasitic diseases are a major public health problem worldwide. Plant-derived products appear to be ideal candidates from a biotechnological perspective, being sustainable and environmentally friendly.
The genus Prosopis comprises 44 species of spiny small trees adapted to arid and semiarid regions of the planet that have been used by human populations as a source of wood, food and medicine. Prosopis spp. possess high quantities of phenolic compounds and piperidine alkaloids with antioxidant, neurotoxic, antimicrobial, antimalarial, insecticidal and allelopathic activities. Juliprosopine is the major and more characterized piperidine alkaloid present in the genus Prosopis. In this review we present the potential of Prosopis spp. extracts and piperidine alkaloids for the control of plant pests and diseases and discuss the possibility of their use as an alternative in organic agriculture.
Parasitic diseases have a major impact on human and animal health worldwide. Despite the availability of effective anti-parasitic drugs, their excessive and uncontrolled use has promoted the emergence of drug resistance, severely affecting ecosystems and human health. Thus, developing environmentally friendly antiparasitic treatments is urgently needed. Carica papaya has shown promising effects against infectious diseases. C. papaya embryogenic calluses were genetically modified by our research team to insert immunogenic peptides with the goal of developing an oral anti-cysticercosis vaccine. Among these callus cell lines, one labeled as CF-23, which expresses the KETc7 immunogenic peptide, induced the highest protection levels against experimental cysticercosis. In the process of designing a natural antiparasitic product based on C. papaya that simultaneously induced immunity against cysticercosis, both transformed (SF-23) and untransformed (SF-WT) suspension cultures were produced and optimized. Our results showed a better duplication time (td) for SF-23 (6.9 days) than SF-WT (13.02 days); thus, the SF-23 line was selected for scale-up in a 2-L airlift bioreactor, reaching a td of 4.4 days. This is the first time that a transgenic line of C. papaya has been grown in an airlift bioreactor, highlighting its potential for scale-up cultivation in this type of reactor. Considering the previously reported nematocidal activity of C. papaya tissues, their activity against the nematode Haemonchus contortus of aqueous extracts of SF-WT and SF-23 was explored in this study, with promising results. The information herein reported will allow us to continue the cultivation of the transgenic cell suspension line of C. papaya under reproducible conditions, to develop a new anti-parasitic product.
Parasitic diseases fecally transmitted, such taeniasis/cysticercosis Taenia solium binomial, represent a health problem whose incidence continues due to the prevalence of inadequate sanitary conditions, particularly in developing countries. When the larval stage of the parasite is established in the central nervous system causes neurocysticercosis a disease than can severely affect human health. It can also affect pigs causing cysticercosis causing economic losses. Since pigs are obligatory intermediate hosts, they have been considered as the targets for vaccination to interrupt the transmission of the parasitosis and eventually reduce the disease. Progress has been made in the development of vaccines for the prevention of porcine cysticercosis. In our research group, three peptides have been identified that, expressed synthetically (S3Pvac) or recombinantly (S3Pvac-phage), reduced the amount of cysticerci by 98.7% and 87%, respectively, in pigs exposed to natural conditions of infection. Considering that cysticercosis is orally acquired, it seems feasible to develop an edible vaccine, which could be administered by the pig farmers, simplifying the logistical difficulties of its application, reducing costs, and facilitating the implementation of vaccination programs. This chapter describes the most important advances towards the development of an oral vaccine against porcine cysticercosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.