Receptor-specific nuclear targeting requires trifunctional metal complexes. We have synthesized [M(L(2)-pept)(L(1)-acr)(CO)(3)] (pept=peptide; acr=acridine-based agent) in which the fac-[M(CO)(3)](+) moiety (1st function, M=(99m)Tc, Re) couples an acridine-based nuclear-targeting agent (2nd function, L(1)-acr) and the specific cell-receptor-binding peptide bombesin (3rd function, L(2)-pept). The metal-mediated coupling is based on the mixed ligand [2+1] principle. The nuclear targeting agents have been derivatised with an isocyanide group for monodentate (L(1)) and bombesin (BBN) with a bidentate ligand (L(2)) for complexation to fac-[M(CO)(3)](+). For nuclear uptake studies, the model complexes [Re(L(2))(L(1)-acr)(CO)(3)] (L(2)=pyridine-2-carboxylic acid and pyridine-2,4-dicarboxylic acid) were synthesized and structurally characterized. We selected acridine derivatives as nuclear-targeting agents, because they are very good nucleus-staining agents and exhibit strong fluorescence. Despite the bulky metal complexes attached to acridine, all [Re(L(2))(L(1)-acr)(CO)(3)] showed high accumulation in the nuclei of PC3 and B16F1 cells, as evidenced by fluorescence microscopy. For radiopharmaceutical purposes, the (99m)Tc analogues have been prepared and radioactivity distribution confirmed the fluorescence results. Coupling of BBN to L(2) gave the receptor-selective complexes [M(L(2)-BBN)(L(1)-acr)(CO)(3)]. Whereas no internalization was found with B16F1 cells, fluorescence microscopy on PC3 cells bearing the BBN receptor showed high and rapid uptake by receptor-mediated endocytosis into the cytoplasm, but not into the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.