Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown exemplary performance on several competitions related to Computer Vision and Image Processing. Interesting application areas of CNN include Image Classification and Segmentation, Object Detection, Video Processing, Natural Language Processing, Speech Recognition, etc. The powerful learning ability of deep CNN is largely due to the use of multiple feature extraction stages that can automatically learn representations from the data. Availability of a large amount of data and improvements in the hardware technology have accelerated the research in CNNs, and recently very interesting deep CNN architectures have been reported. In fact, several interesting ideas to bring advancements in CNNs have been explored such as the use of different activation and loss functions, parameter optimization, regularization, and architectural innovations. However, the major improvement in representational capacity of the deep CNN is achieved through architectural innovations. Especially, the idea of exploiting spatial and channel information, depth and width of architecture, and multi-path information processing has gained substantial attention. Similarly, the idea of using a block of layers as a structural unit is also gaining popularity. This survey thus focuses on the intrinsic taxonomy present in the recently reported deep CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature-map exploitation, channel boosting, and attention. Additionally, the elementary understanding of CNN components, current challenges and applications of CNN are also provided. CNNs are the best among learning algorithms in understanding images content, and have shown exemplary results in segmentation, classification, detection, and retrieval related tasks [8], [9]. The success of CNNs has captured attention beyond academia. In industry, companies such as Google, Microsoft, AT&T, NEC, and Facebook have developed active research groups for exploring new architectures of CNN [10]. At present, most of the frontrunners of image processing and computer vision competitions are employing deep CNN based models.The attractive feature of CNN is its ability to exploit spatial or time correlation of the data. The topology of CNN is divided into multiple learning stages composed of a combination of the convolutional layers, non-linear processing units, and subsampling layers [11]. CNNs are feedforward multilayered hierarchical networks that are similar to fully connected neural network where each layer, using a bank of convolutional kernels, performs multiple transformations [12]. Convolution operation extracts useful features from locally correlated data points. Output of the convolutional kernels is assigned to non-linear processing unit (activation function), which not only helps in learning abstractions but also emb...
The new emerging COVID-19, declared a pandemic disease, has affected millions of human lives and caused a massive burden on healthcare centers. Therefore, a quick, accurate, and low-cost computer-based tool is required to timely detect and treat COVID-19 patients. In this work, two new deep learning frameworks: Deep Hybrid Learning (DHL) and Deep Boosted Hybrid Learning (DBHL), is proposed for effective COVID-19 detection in X-ray dataset. In the proposed DHL framework, the representation learning ability of the two developed COVID-RENet-1 & 2 models is exploited individually through a machine learning (ML) classifier. In COVID-RENet models, Region and Edge-based operations are carefully applied to learn region homogeneity and extract boundaries features. While in the case of the proposed DBHL framework, COVID-RENet-1 & 2 are fine-tuned using transfer learning on the chest X-rays. Furthermore, deep feature spaces are generated from the penultimate layers of the two models and then concatenated to get a single enriched boosted feature space. A conventional ML classifier exploits the enriched feature space to achieve better COVID-19 detection performance. The proposed COVID-19 detection frameworks are evaluated on radiologist’s authenticated chest X-ray data, and their performance is compared with the well-established CNNs. It is observed through experiments that the proposed DBHL framework, which merges the two-deep CNN feature spaces, yields good performance (accuracy: 98.53%, sensitivity: 0.99, F-score: 0.98, and precision: 0.98). Furthermore, a web-based interface is developed, which takes only 5-10s to detect COVID-19 in each unseen chest X-ray image. This web-predictor is expected to help early diagnosis, save precious lives, and thus positively impact society.
The mitotic activity index is a key prognostic measure in tumour grading. Microscopy based detection of mitotic nuclei is a significant overhead and necessitates automation. This work proposes deep CNN based multi-phase mitosis detection framework “MP-MitDet” for mitotic nuclei identification in breast cancer histopathological images. The workflow constitutes: (1) label-refiner, (2) tissue-level mitotic region selection, (3) blob analysis, and (4) cell-level refinement. We developed an automatic label-refiner to represent weak labels with semi-sematic information for training of deep CNNs. A deep instance-based detection and segmentation model is used to explore probable mitotic regions on tissue patches. More probable regions are screened based on blob area and then analysed at cell-level by developing a custom CNN classifier “MitosRes-CNN” to filter false mitoses. The performance of the proposed “MitosRes-CNN” is compared with the state-of-the-art CNNs that are adapted to cell-level discrimination through cross-domain transfer learning and by adding task-specific layers. The performance of the proposed framework shows good discrimination ability in terms of F-score (0.75), recall (0.76), precision (0.71) and area under the precision-recall curve (0.78) on challenging TUPAC16 dataset. Promising results suggest good generalization of the proposed framework that can learn characteristic features from heterogenous mitotic nuclei.
COVID-19 is a respiratory illness that has affected a large population worldwide and continues to have devastating consequences. It is imperative to detect COVID-19 at the earliest opportunity to limit the span of infection. In this work, we developed a new CNN architecture STM-RENet to interpret the radiographic patterns from X-ray images. The proposed STM-RENet is a block-based CNN that employs the idea of split–transform–merge in a new way. In this regard, we have proposed a new convolutional block STM that implements the region and edge-based operations separately, as well as jointly. The systematic use of region and edge implementations in combination with convolutional operations helps in exploring region homogeneity, intensity inhomogeneity, and boundary-defining features. The learning capacity of STM-RENet is further enhanced by developing a new CB-STM-RENet that exploits channel boosting and learns textural variations to effectively screen the X-ray images of COVID-19 infection. The idea of channel boosting is exploited by generating auxiliary channels from the two additional CNNs using Transfer Learning, which are then concatenated to the original channels of the proposed STM-RENet. A significant performance improvement is shown by the proposed CB-STM-RENet in comparison to the standard CNNs on three datasets, especially on the stringent CoV-NonCoV-15k dataset. The good detection rate (97%), accuracy (96.53%), and reasonable F-score (95%) of the proposed technique suggest that it can be adapted to detect COVID-19 infected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.