A highly regioselective, efficient, and metal-free oxidative cross dehydrogenative coupling (CDC) of aryl carbonyls with cyclic ethers has been developed. This method offers easy access to substituted α-arylated cyclic ethers with a high functional group tolerance in good to excellent yields. The regioselectivity of this CDC reaction was confirmed by density functional theory (DFT)-based calculations.
In the German towns of Marburg, Frankfurt, and Belgrade in 1967, this single negative-stranded RNA virus was initially discovered. The importation of infected grivet monkeys from Uganda is what caused this virus-related sickness. As a result of the early link between viruses and non-human primates, this virus is frequently referred to as vervet monkey sickness. This virus causes Marburg hemorrhagic fever in humans and non-human primates. Human endothelial cells serve as the primary vehicle for replication. According to a 2009 report, the virus was being stored in Egyptian fruit bats (Rousettus aegyptiacus). Body fluids, unprotected sex, broken or injured skin, and other bodily fluids are the main routes of transmission. After the incubation period, symptoms like chills, headaches, myalgia, and stomach pain start to show up. There is no specific medication for such an infection, only hydration therapy and adequate oxygenation are followed. The following diagnostic techniques can be used to confirm the diagnosis: (i) an antibody-capture enzyme linked immunosorbent assay (ELISA); ii) an antigen capture ELISA test; iii) a serum neutralization test; iv) an RT PCR assay; v) electron microscopy; or vi) virus isolation by cell culture. Because MARV is a risk group 4 infection, laboratory staff must take strict precautions (RG-4).
The current work showcases general principles at play in systems consisting of cations present inside molecular cages. Such systems, relevant to chemistry and biology, have been carefully investigated by computational methods. The important Ge(II)-encapsulating cage systems have been studied first. The very fact that such compounds exist appears highly unlikely, given the highly reactive nature of the Ge(II) dication. Our studies reveal what really occurs in solution when such complexes are formed: the Ge(II) dications are actually present as [Ge−X] + (where X is the "non-coordinating" counterion employed in such systems) during entry and subsequent existence at the center of the cage. Hence, what is actually present is a "pseudomonocation". Interestingly, such pseudomonocationencapsulated cages are seen to be equally relevant in systems of biological importance, such as for dicationic s block-based ionophores. In explaining such cases, the concept of "isoionicity" is introduced, demonstrating that the counterion-coordinated dications are isoionic with a monocation, such as Li(I), isolated in the same ionophore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.