We propose the representation of data from finite element car crash simulations in a graph database to empower analysis approaches. The industrial perspective of this work is to narrow the gap between the uptake of modern machine learning methods and the current computer-aided engineering-based vehicle development workflow. The main goals for the graph representation are to achieve searchability and to enable pattern and trend investigations in the product development history. In this context, we introduce features for car crash simulations to enrich the graph and to provide a summary overview of the development stages. These features are based on the energy output of the finite element solver and, for example, enable filtering of the input data by identifying essential components of the vehicle. Additionally, based on these features, we propose fingerprints for simulation studies that assist in summarizing the exploration of the design space and facilitate cross-platform as well as load-case comparisons. Furthermore, we combine the graph representation with energy features and use a weighted heterogeneous graph visualization to identify outliers and cluster simulations according to their similarities. We present results on data from the real-life development stages of an automotive company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.