Spatiotemporal data is a type of data that is collected by the sensors. This type of data has two spatial and temporal dimensions. There are many challenges in analyzing spatiotemporal big data. Common evaluation metrics of clustering methods are not appropriate for spatiotemporal data. Previous clustering methods and the conventional evaluation metrics are efficient for data like time series with only one segment. Therefore, other metrics are required to evaluate the clustering of such data. In this study, energy function, reconstruction, and prediction metrics are used to evaluate the quality of spatiotemporal data clustering. The purpose of this study is to minimize the energy function using the Fuzzy C-Mean method on spatiotemporal data. The obtained results are compared with those obtained using k-medoid, DBSCAN, COBWEB, X-means, and TLBO. Also, the energy function, reconstruction, and prediction metrics are used to evaluate the quality of the clusters. The clustering methods are implemented on the dataset of parking located in the CBD area of Australia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.