International audienceThis work is devoted to the numerical simulation of the Vlasov equation in the fluid limit using particles. To that purpose, we first perform a micro-macro decomposition as in \cite{benoune} where asymptotic preserving schemes have been derived in the fluid limit. In \cite{benoune}, a uniform grid was used to approximate both the micro and the macro part of the full distribution function. Here, we modify this approach by using a particle approximation for the kinetic (micro) part, the fluid (macro) part being always discretized by standard finite volume schemes. There are many advantages in doing so: $(i)$ the so-obtained scheme presents a much less level of noise compared to the standard particle method; $(ii)$ the computational cost of the micro-macro model is reduced in the fluid regime since a small number of particles is needed for the micro part; $(iii)$ the scheme is asymptotic preserving in the sense that it is consistent with the kinetic equation in the rarefied regime and it degenerates into a uniformly (with respect to the Knudsen number) consistent (and deterministic) approximation of the limiting equation in the fluid regime
In this work, we derive particle schemes, based on micro-macro decomposition, for linear kinetic equations in the diffusion limit. Due to the particle approximation of the micro part, a splitting between the transport and the collision part has to be performed, and the stiffness of both these two parts prevent from uniform stability. To overcome this difficulty, the micro-macro system is reformulated into a continuous PDE whose coefficients are no longer stiff, and depend on the time step ∆t in a consistent way. This non-stiff reformulation of the micro-macro system allows the use of standard particle approximations for the transport part, and extends the work in [5] where a particle approximation has been applied using a micro-macro decomposition on kinetic equations in the fluid scaling. Beyond the so-called asymptotic-preserving property which is satisfied by our schemes, they significantly reduce the inherent noise of traditional particle methods, and they have a computational cost which decreases as the system approaches the diffusion limit.
In this work, we develop a new class of numerical schemes for collisional kinetic equations in the diffusive regime. The first step consists in reformulating the problem by decomposing the solution in the time evolution of an equilibrium state plus a perturbation. Then, the scheme combines a Monte Carlo solver for the perturbation with an Eulerian method for the equilibrium part, and is designed in such a way to be uniformly stable with respect to the diffusive scaling and to be consistent with the asymptotic diffusion equation. Moreover, since particles are only used to describe the perturbation part of the solution, the scheme becomes computationally less expensive-and is thus an asymptotically complexity diminishing scheme (ACDS)-as the solution approaches the equilibrium state due to the fact that the number of particles diminishes accordingly. This contrasts with standard methods for kinetic equations where the computational cost increases (or at least does not decrease) with the number of interactions. At the same time, the statistical error due to the Monte Carlo part of the solution decreases as the system approaches the equilibrium state: the method automatically degenerates to a solution of the macroscopic diffusion equation in the limit of infinite number of interactions. After a detailed description of the method, we perform several numerical tests and compare this new approach with classical numerical methods on various problems up to the full three dimensional case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.