The COVID-19 pandemic has encouraged the repurposing of existing drugs as a shorter development strategy in order to support clinicians with this difficult therapeutic dilemma. There is evidence to support the theory that some antidepressants can reduce concentrations of different cytokines in humans and animals and, recently, the antiviral activity of some antidepressants against SARS-CoV-2 has been reported. The aims of this narrative review are to evaluate the possible role of antidepressants in the treatment of COVID-19 infection and the possible benefits and risks of patients taking antidepressants for mental disorders and COVID-19 infection. A review was performed to analyse the current literature to identify the role of antidepressant medication in the treatment of COVID-19 patients. The electronic search was completed in MEDLINE and MedRxiv/BioRxiv for published literature and in ClinicalTrials.gov for ongoing clinical trials. The results show some evidence from preclinical data and observational studies about the possible efficacy of some specific antidepressants for treating COVID-19 infection. In addition, two published phase II studies testing fluvoxamine showed positive results for clinical deterioration and hospitalization rate versus a placebo. Seven ongoing clinical trials testing fluvoxamine, fluoxetine, and tramadol (as per its anti-inflammatory and antidepressant effect) are still in the early phases. Although the available evidence is limited, the sum of the antiviral and anti-inflammatory preclinical studies and the results from several observational studies and two phase II clinical trials provide the basis for ongoing clinical trials evaluating the possible use of antidepressants for COVID-19 infection in humans. Further investigations will be needed to support the possible use of antidepressants for this application.
BackgroundThe transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5.Methodology/Principal FindingsUsing confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD). NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin.Conclusions/SignificanceOur results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export signals acting in interphase, resets the cytoplasmic localization of NFAT5 and prevents its nuclear accumulation and association with DNA in the absence of hypertonic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.