We present a novel robot social-aware navigation framework to walk side-by-side with people in crowded urban areas in a safety and natural way. The new system includes the following key issues: to propose a new robot social-aware navigation model to accompany a person; to extend the Social Force Model, "Extended Social-Force Model" (ESFM), to consider the person and robots interactions; to use a human predictor to estimate the destination of the person the robot is walking with; and to interactively learning the parameters of the social-aware navigation model using multimodal human feedback. Finally, a quantitative metric based on people's personal spaces and comfortableness criteria, is introduced in order to evaluate quantitatively the performance of the robot's task. The validation of the model is accomplished throughout an extensive set of simulations and real-life experiments. In addition, a volunteers' survey is used to measure the acceptability of our robot companion's behavior.
Se presenta un nuevo método para localizar a personas en entornos urbanos usando robots móviles sociales que trabajan de manera cooperativa, el cual supera las limitaciones de enfoques ya existentes, que se adaptan a entornos específicos, o se basan en comportamientos humanos poco re- alistas. Con este método cooperativo los robots pueden encontrar a personas fuera del campo de rango de sensores u ocultados por obstáculos dinámicos o estáticos. Nuestro enfoque incluye la búsqueda de personas, seguimiento, cooperación multi-robot y comunicación. En particular se define un “Cooperative Highest-Belief Continuous Real-time POMCP” que puede ejecutarse en tiempo real y en entornos continuos y grandes. En este método se usan algoritmos de búsqueda on-line Partially Observable Monte-Carlo Planning (POMCP), los cuales, al contrario de trabajos anteriores son capaces de planificar con incertidumbre y con grandes espacios de estados. La estrategia de búsqueda hace un balanceo entre la probabilidad de que la persona esté en una posición concreta, la distancia de las posiciones, y si la posición está cerca de una meta ya asignada a otro robot. Se ha validado el método con extensivo número de simulaciones y experimentos reales con una persona y dos robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.