A systematic comparison of lipophilicity modulations upon fluorination of isopropyl, cyclopropyl and 3-oxetanyl substituents, at a single carbon atom, is provided using directly comparable, and easily accessible model compounds. In addition, comparison with relevant linear chain derivatives is provided, as well as lipophilicity changes occurring upon chain extension of acyclic precursors to give cyclopropyl containing compounds. For the compounds investigated, fluorination of the isopropyl substituent led to larger lipophilicity modulation compared to fluorination of the cyclopropyl substituent.
New psychoactive substances (NPS) have become a serious threat for public health due to their ability to be sold in the street or on internet. NPS are either derived from commercial drugs which are misused (recreational rather than medical use) or whose structure is slightly modified. To regulate NPS, it is essential to accurately characterize them, either to recognize molecules that were previously identified or to quickly elucidate the structure of unknown ones. Most approaches rely on the determination of the exact mass obtained by high‐resolution mass spectrometry requiring expensive equipment. This motivated us to develop a workflow in which the elucidation is assisted with databases and does not need the exact mass. This workflow combines 1D and 2D NMR measurements performed on a benchtop spectrometer with IR spectroscopy, for creating a multi‐technique database to characterize pure and mixed NPS. The experimental database was created with 57 entries mostly coming from seizures, mainly cathinones, cannabinoids, amphetamines, arylcyclohexylamines, and fentanyl. A blind validation of the workflow was carried out on a set of six unknown seizures. In the first three cases, AF, AB‐FUBINACA, and a mixture of 2C‐I and 2C‐E could be straightforwardly identified with the help of their reference spectra in the database. The two next samples were elucidated for the first time with the help of the database to reveal NEK and MPHP substances. Finally, a precise quantification of each characterized NPS was obtained in order to track NPS trafficking networks.
4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) is a well-known ion-exchange inhibitor targeting cardiac functions and indirectly impeding both radio- and chemo-resistance. A joint computational and experimental study is presented to provide deeper insights into DIDS and other members of this family of compounds. To this end, we applied state-of-the-art density functional theory (DFT) and time-dependent DFT methods, in addition to measuring the optical properties. The experimental data show that such compounds are highly sensitive to their environment and that the optical properties change within as little time as 7 h. However, the optical properties of DIDS are similar in various acidic/basic environments, which were confirmed by pKa computations on both cis and trans isomers. The protonation analysis also highlights that the singly protonated form of DIDS behaves like a proton sponge compound. The experimentally observed redshift that can be seen when going from water to DMSO was reproduced solely by using the solvation model based on density, although the polarization continuum model and implicit/explicit hybrid schemes were also tested. The characteristic broadening of the absorption peak in water and the vibronic fine structure in DMSO were also reproduced thanks to vibronic coupling simulations associated with the solvent reorganization energy. For other stilbene derivatives, a correlation is found between the maximum absorption wavelength and the Hammett parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.