A new type of sugar-amino acid hybrid, which is comprised of a sugar unit (gluco-, galacto-, or mannopyranose) linked through a C-glycosidic linkage to the beta-position of an alpha-unsubstituted beta-amino acid unit, is presented. It is hypothesized that these new compounds, or the oligomeric peptides derived therefrom, might possess the structural features of beta-amino acid oligomers and the chemical and enzymatic resistance of C-glycosides to hydrolysis. The synthetic strategy is based on a new Mannich-type reaction between a chiral acetate enolate equivalent and alpha-amido sulfones derived from the corresponding sugar-C-glycoside aldehydes. While the sugar-C-glycoside aldehyde partner is prepared from well-established transformations on known sugar precursors, the lithium enolate derived from (1R)-endo-2-acetylisoborneol 3 is employed as the key element. This Mannich approach proceeds with essentially perfect diasteromeric control leading to the new beta-amino carbonyl adducts in good yields. Further, cleavage of the camphor auxiliary is smoothly performed by oxidative treatment with ammonium cerium nitrate (CAN). Complementarily, direct peptide-type coupling of the beta-amino carbonyl Mannich adducts with an alpha- or beta-amino acid residue and subsequent CAN-promoted detachment of the auxiliary yields dipeptide fragments bearing a sugar-containing aliphatic side chain and is a process that can be iterated. A preliminary conformational study based on the combination of experimental NMR data and molecular mechanics and molecular dynamics (MD) of one particular adduct is also provided.
A practical total synthesis of hapalosin, a compound with multidrug resistance-reversing activity, has been carried out using an unprecedented macrolactonization strategy. One of the features of the new approach is the straightforward and fully stereocontrolled access to the key gamma-amino beta-hydroxy carboxylic acid subunit via an efficient acetate aldol addition reaction with N-methyl alpha-aminoaldehydes, which relies on a camphor-derived chiral lithium acetate enolate reagent. The scope of this aldol reaction is investigated and its potential application to the synthesis of other structurally related, biologically relevant compounds illustrated. Remarkably, the chiral tether in the resulting gamma-amino aldol adducts sterically protect the carbonyl group, thus avoiding intramolecular cyclization during the amino group deprotection and the subsequent segment coupling event. After successful segment coupling and smooth, clean release of the chiral auxiliary, a new macrolactonization protocol, based on the principle of double activation of both reactive sites, is applied, which leads to the 12-membered macrolactone hapalosin in unprecedented chemical efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.