Nitric oxide (NO) was described to inhibit the proliferation of neural stem cells. Some evidence suggests that NO, under certain conditions, can also promote cell proliferation, although the mechanisms responsible for a potential proliferative effect of NO in neural stem cells have remained unaddressed. In this work, we investigated and characterized the proliferative effect of NO in cell cultures obtained from the mouse subventricular zone. We found that the NO donor NOC-18 (10 lM) increased cell proliferation, whereas higher concentrations (100 lM) inhibited cell proliferation. Increased cell proliferation was detected rapidly following exposure to NO and was prevented by blocking the mitogen-activated kinase (MAPK) pathway, independently of the epidermal growth factor (EGF) receptor. Downstream of the EGF receptor, NO activated p21Ras and the MAPK pathway, resulting in a decrease in the nuclear presence of the cyclin-dependent kinase inhibitor 1, p27 KIP1 , allowing for cell cycle progression. Furthermore, in a mouse model that shows increased proliferation of neural stem cells in the hippocampus following seizure injury, we observed that the absence of inducible nitric oxide synthase (iNOS 2/2 mice) prevented the increase in cell proliferation observed following seizures in wild-type mice, showing that NO from iNOS origin is important for increased cell proliferation following a brain insult. Overall, we show that NO is able to stimulate the proliferation of neural stem cells bypassing the EGF receptor and promoting cell division. Moreover, under pathophysiological conditions in vivo, NO from iNOS origin also promotes proliferation in the hippocampus. STEM CELLS
Patients with coronavirus disease‐2019 may be discharged based on clinical resolution of symptoms, and evidence for viral RNA clearance from the upper respiratory tract. Understanding the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) viral clearance profile is crucial to establish a re‐testing plan on discharge and ending isolation of patients. We aimed to evaluate the number of days that a patient needed to achieve undetectable levels of SARS‐CoV‐2 in upper respiratory tract specimens (nasopharyngeal swab and/or an oropharyngeal swab). The clearance and persistence of viral RNA was evaluated in two groups of positive patients: those who achieved two negative reverse transcription‐polymerase chain reaction (RT‐PCR) tests and those who kept testing positive. Patients were organized thereafter in two subgroups, mild illness patients discharged home and inpatients who had moderate to severe illness. Results from RT‐PCR tests were then correlated with results from the evaluation of the immune response. The study evidenced that most patients tested positive for more than 2 weeks and that persistence of viral RNA is not necessarily associated with severe disease but may result from a weaker immune response instead.
BackgroundOsteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies.MethodsCSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis.ResultsThe isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs.ConclusionsMNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.
Using vitreous fluorophotometry and quantitative fluorescence microscopy the authors studied the permeability of the blood-retinal barrier (BRB) to fluorescein in control and in 8 days streptozotocin-induced diabetic rats. Vitreous fluorophotometry showed that fluorescein permeates BRB in control and in diabetic rats. However, in diabetic rats the permeability to fluorescein was significantly increased as compared to control rats. The vitreous penetration ratio (VPR) values for total and free fluorescein at 60 min, were higher for diabetic rats (231.2+/-12.9 min-1 for total fluorescein and 1299.24+/-58.0 min-1 for free fluorescein) than for control rats (95.5+/-3.5 min-1 for total fluorescein and 646.6+/-55. 0 min-1 for free fluorescein) (P<0.05). Quantitative confocal fluorescence microscopy confirmed these findings and identified the site of leakage across the BRB by comparing the relative importance of the fluorescein leakage across the outer and inner BRB. In control rats the fluorescence levels remained relatively low in the photoreceptor layer, next to the outer BRB but in the inner nuclear layer, next to the inner BRB reached values that were almost ten times higher. These results suggest that in retinas of control rats fluorescein penetrates predominantly through the inner BRB. In diabetic rats the fluorescence levels in the photoreceptor and in the inner nuclear layer were significantly increased as compared to the fluorescence levels in controls rats. Nevertheless, in the inner nuclear layer the fluorescence levels were also generally higher than the fluorescence levels at the photoreceptor layer. The rates of fluorescence levels between the inner nuclear layer and the photoreceptor layer were apparently 3:1, 60 min after the single intravenous injection of fluorescein. Also, the fluorescein penetration in the inner nuclear layer of the diabetic rats is higher than that observed in the inner nuclear layer of the control rats (P<0.001). These findings suggest that the permeability to fluorescein of both components of the BRB is increased 8 days after the induction of diabetes by streptozotocin and that the permeability of the retinal vasculature is preferentially affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.