Summary Regulatory T cells [Tregs; CD4+ CD25 + forkhead box protein 3 (FoxP3 + )] are subsets of T cells involved in the maintenance of peripheral self-tolerance by actively suppressing the activation and expansion of autoreactive T cells. Signalling through the interleukin-2 receptor (IL-2R) contributes to T cell tolerance by controlling three important aspects of regulatory T cell (Treg) biology. CD25 is the α-chain of the IL-2R that, in concert with the β-chain and γ-chain, constitutes the complete IL-2R. CD25 contributes only to IL-2 binding affinity but not to the recruitment of signalling molecules. However, its importance in the development of a normal immune response is emphasized by the finding that a truncation mutant of CD25 results in an immunodeficiency in humans characterized by an increased susceptibility to viral, bacterial and fungal infections. In 1997, Sharfe et al. described an infant with severe bacterial, viral and fungal infections. Counts of autologous T lymphocytes were moderately low, T cells displayed a weak proliferative response to mitogens in vitro and the patient displayed no rejection of an allogeneic skin graft. However, unlike children with severe combined immunodeficiency (SCID), besides not having circulating T cells, the patient also developed peripheral lymphocytic proliferation and autoimmune primary biliary cirrhosis. We present the first female Argentine patient with mutation in CD25 associated with chronic and severe inflammatory lung disease (follicular bronchiolitis with lymphocyte hyperplasia), eczema and infections. She has no expression of CD25 on CD4 + T cells and an extremely low amount of Tregs. The molecular study confirmed homozygous missense mutation in the alpha subunit of the IL-2 receptor (CD25αR) (c. 122 a > c; p. Y41S).
During recent years, the identification of monogenic mutations that cause sterile inflammation has expanded the spectrum of autoinflammatory diseases, clinical disorders characterized by uncontrolled systemic and organ-specific inflammation that, in some cases, can mirror infectious conditions. Early studies support the concept of innate immune dysregulation with a predominance of myeloid effector cell dysregulation, particularly neutrophils and macrophages, in causing tissue inflammation. However, recent discoveries have shown a complex overlap of features of autoinflammation and/or immunodeficiency contributing to severe disease phenotypes. Here, we describe the first Argentine patient with a newly described frameshift mutation in SAMD9L c.2666delT/p.F889Sfs*2 presenting with a complex phenotypic overlap of CANDLE-like features and severe infection-induced cytopenia and immunodeficiency. The patient underwent a fully matched unrelated HSCT and has since been in inflammatory remission 5 years post-HSCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.