Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.
Mitchell. 2016. The path back: oaks (Quercus spp.) facilitate longleaf pine (Pinus palustris) seedling establishment in xeric sites. Ecosphere 7(6):e01361. 10.1002/ecs2.1361Abstract. Understanding plant-plant facilitation is critical for predicting how plant community function will respond to changing disturbance and climate. In longleaf pine (Pinus palustris Mill.) ecosystems of the southeastern United States, understanding processes that affect pine reproduction is imperative for conservation efforts that aim to maintain ecosystem resilience across its wide geographic range and edaphic gradients. Variation in wildland fire and plant-plant interactions may be overlooked in "coarse filter" restoration management, where actions are often prescribed over a variety of ecological conditions with an assumed outcome. For example, hardwood reduction techniques are commonly deemed necessary for ecological restoration of longleaf pine ecosystems, as hardwoods are presumed competitors with longleaf pine seedlings. Natural regeneration dynamics are difficult to test experimentally given the infrequent and irregular mast seed events of the longleaf pine. Using a long-term, large-scale restoration experiment and a long-term monitoring data site at Eglin Air Force Base, Florida (USA), this study explores the influence of native fire-intolerant oaks on longleaf regeneration. We test for historical observations of hardwood facilitation against the null hypothesis of competitive exclusion. Our results provide evidence of hardwood facilitation on newly germinated longleaf pine seedlings (<2 yr old) after two mast seeding events (1996, 2011). Using regression-tree and Kaplan-Meier survival analyses, we found that deciduous oak midstory density was the most significant variable associated with longleaf pine seedling survival rates in the first 2 yr after germination. We found that as few as 43 oak midstory stems ha −1 were sufficient to facilitate seedling survival, but as many as 1400 stems ha −1 maintained facilitation without competitive exclusion of seedlings. We found that 1.5-yr-old pine seedlings were more moisture stressed under more open canopy conditions when compared to those immediately adjacent to a midstory oak canopy. Recognition that deciduous oaks are important facilitators of longleaf seedling establishment on xeric sites represents a significant departure from conventional wisdom and current management practices that has largely focused on competitive exclusion. This points to a critical role of a deciduous oak midstory of moderate densities for long-term ecosystem resilience in xeric longleaf pine ecosystems in light of climate uncertainty.
A major focus of conservation is on protecting areas to ensure the persistence of biological diversity. Because such areas may be large, not easily accessible, subject to change, and sensitive to the surrounding landscape, remote sensing can be a valuable tool in establishing and managing protected areas. We describe three case studies to illustrate how remote sensing can contribute to setting priorities for conservation actions, monitoring the status of conservation targets, and evaluating the effectiveness of conservation strategies. In the Connecticut River watershed, remote sensing has been used to assess flood regimes and identify key areas of floodplain forests and their context for conservation planning. At Eglin Air Force Base in Florida, remote sensing has provided information to assess the effectiveness of management strategies to restore fire to the longleaf pine sandhills ecosystem, control invasive species, and prioritize annual prescribed burns. In eastern US forests, remote sensing is being used to evaluate the ecological condition and changes at properties where direct access would be difficult. As the resolution and capacities of remote-sensing technology continue to develop, however, several issues are becoming increasingly important. It is essential that the spatial and temporal resolution of remotesensing data be matched to the relevant scales of biodiversity, major threats, and management actions. Data layers must be compatible, both in scale and in measurement properties, and key patterns must be distinguished from irrelevant detail, especially at the finer scales of application in local management. Combining remote sensing with ground surveys can expand the array of information used in management and contribute to the ecological interpretation of remote-sensing data. Because conservation funds are always limited, remote sensing also must be cost effective. This requires balancing the wealth of detail afforded by ever-finer resolution of remote-sensing data with what is actually needed to implement sound conservation and management. Remote sensing is a valuable tool, but it is not a panacea for all of the challenges of conservation monitoring and management.Published by Elsevier Inc.
The use of reference models as templates of historical or natural conditions to assess restoration progress is inherently logical; however, difficulties occur in application because of the need to incorporate temporal variation in ecosystems caused by disturbance and succession, as well as seasonal, interannual, or decadal variability. The landscape-scale restoration of the globally threatened and fire-dependent longleaf pine ecosystem in the southeastern United States is an example in which restoration efforts are even more complicated by the limited availability of extant reference sites. This study uses the dynamic reference conceptual framework to assess the direction and rate of recovery with respect to biodiversity restoration goals using a 15-year vegetation data set from an experimental restoration treatment in fire-excluded, hardwood-encroached longleaf pine sandhills. We compared ground-cover vegetation response to midstory hardwood removal through herbicide application, mechanical removal, and fire only. Nonmetric multidimensional scaling ordinations and proportional similarity analyses suggest that, while vegetation changed in all treatments over time, no differences in species composition or hardwood density in the ground cover were attributable to hardwood reduction treatments after 15 years with frequent prescribed fire. Furthermore, the results of this study indicate that considerable variability is associated with reference sites over time. Sites identified in 1994 as attainable restoration targets had become a moving target themselves, changing in magnitude consistent with alterations in restoration plots attributable to treatment effects and shaped by the modest increase in fire frequency imposed since 1998. In a broad restoration context, this study demonstrates a conceptual framework to better understand and integrate the range of spatial and temporal variation associated with the best available reference sites. It also illustrates a practical tool for statistically defining reference sites and for measuring restoration success in continually changing conditions that should be widely applicable to other ecosystems and restoration goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.