Metabotropic glutamate receptor 4 (mGlu4) is emerging as a potential therapeutic target for numerous central nervous system indications, including Parkinson’s disease (PD). As the glutamate binding sites among the eight mGlu receptors are highly conserved, modulation of receptor activity via allosteric sites within the receptor transmembrane domains using positive and negative allosteric modulators (PAMs and NAMs, respectively) has become a common strategy. We and others have used PAMs targeting mGlu4 to show that potentiation of receptor signaling induces antiparkinsonian activity in a variety of PD animal models, including haloperidol-induced catalepsy and 6-hydroxydopamine-induced lesion. Recently, mGlu4 has been reported to form heteromeric complexes with other mGlu receptor subtypes, such as mGlu2, and the resulting heteromer exhibits a distinct pharmacological profile in response to allosteric modulators. For example, some mGlu4 PAMs do not appear to potentiate glutamate activity when mGlu2 and mGlu4 are coexpressed, whereas other compounds potentiate mGlu4 responses regardless of mGlu2 coexpression. We report here the discovery and characterization of VU0418506, a novel mGlu4 PAM with activity in rodent PD models. Using pharmacological approaches and Complemented Donor–Acceptor resonance energy transfer (CODA-RET) technology, we find that VU0418506 does not potentiate agonist-induced activity when mGlu2 and mGlu4 are heterodimerized, suggesting that the antiparkinsonian action of mGlu4 PAMs can be induced by compounds without activity at mGlu2/4 heteromers.
Preclinical evidence in support of
the potential utility of mGlu5 NAMs for the treatment of
a variety of psychiatric and neurodegenerative
disorders is extensive, and multiple such molecules have entered clinical
trials. Despite some promising results from clinical studies, no small
molecule mGlu5 NAM has yet to reach market. Here we present
the discovery and evaluation of N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide
(27, VU0424238), a compound selected for clinical evaluation.
Compound 27 is more than 900-fold selective for mGlu5 versus the other mGlu receptors, and binding studies established
a Ki value of 4.4 nM at a known allosteric
binding site. Compound 27 had a clearance of 19.3 and
15.5 mL/min/kg in rats and cynomolgus monkeys, respectively. Imaging
studies using a known mGlu5 PET ligand demonstrated 50%
receptor occupancy at an oral dose of 0.8 mg/kg in rats and an intravenous
dose of 0.06 mg/kg in baboons.
This work describes the discovery and characterization of novel 6-(1Hpyrazolo[4,3-b]pyridin-3-yl)amino-benzo[d]isothiazole-3-carboxamides as mGlu 4 PAMs. This scaffold provides improved metabolic clearance and CYP1A2 profiles compared to previously discovered mGlu 4 PAMs. From this work, 27o (VU6001376) was identified as a potent (EC 50 = 50.1 nM, 50.5% GluMax) and selective mGlu 4 PAM with an excellent rat DMPK profile (in vivo rat CL p = 3.1 mL/min/kg, t 1/2 = 445 min, CYP1A2 IC 50 > 30 μM). Compound 27o was also active in reversing haloperidol induced catalepsy in a rodent preclinical model of Parkinson's disease.
Based on a hypothesis that an intramolecular hydrogen bond was present in our lead series of picolinamide mGlu5 NAMs, we reasoned that an inactive nicotinamide series could be modified through introduction of a fused heterocyclic core to generate potent mGlu5 NAMs. In this Letter, we describe the synthesis and evaluation of compounds that demonstrate the viability of that approach. Selected analogs were profiled in a variety of in vitro assays, and two compounds were evaluated in rat pharmacokinetic studies and a mouse model of obsessive-compulsive disorder. Ancillary pharmacology screening revealed that members of this series exhibited moderate inhibition of the dopamine transporter (DAT), and SAR was developed that expanded the selectivity for mGlu5 versus DAT.
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from G
i/o
GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble
N
-ethylmaleimide–sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation.
Snap25
Δ3/Δ3
mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in
Snap25
Δ3/Δ3
mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in
Snap25
Δ3/Δ3
mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from
Snap25
Δ3/Δ3
inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.