This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Cisplatin (cDDP) is an anticancer agent that is widely used in the treatment of many solid tumors. A major obstacle to successful cDDP-based chemotherapy, however, is the intrinsic and acquired resistance of tumor cells to this drug. Greater insight into the molecular mechanisms underlying the modulation of cellular responses to cDDP will aid in the development and optimization of new therapeutic strategies. Apart from induction of DNA damage, recent data have suggested that cDDP also induces the formation of reactive oxygen species that can trigger cell death. Cell death occurs as the result of several simultaneously activated signaling pathways. The specific pathway responsible for cell death depends on the cell type and the treatment conditions. This review focuses on the relationship between glutathione and BCL-2 and their protective role in cDDP-induced reactive oxygen species formation and cDDP resistance.
Tumor cells chronically exposed to cisplatin (cDDP) acquire cDDP resistance that impacts tumor therapy. To elucidate the mechanism of acquired cDDP resistance (ACR), we compared HeLa cells that gained ACR upon chronic cDDP treatment with the parental strain. We show that ACR is due to a lower level of induced apoptosis. Further, upon cDDP treatment, the levels of Fas, Bax and Bid remained unchanged, whereas Bcl-2 and p-Bad were reduced at late times (120 hr
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.