Context. Cosmological probes based on galaxy clusters rely on cluster number counts and large-scale structure information. X-ray cluster surveys are well suited for this purpose because they are far less affected by projection effects than optical surveys, and cluster properties can be predicted with good accuracy. Aims. The XMM Cluster Archive Super Survey, X-CLASS, is a serendipitous search of X-ray-detected galaxy clusters in 4176 XMM-Newton archival observations until August 2015. All observations are clipped to exposure times of 10 and 20 ks to obtain uniformity, and they span ∼269 deg 2 across the high-Galactic latitude sky (|b| > 20 o ). The main goal of the survey is the compilation of a wellselected cluster sample suitable for cosmological analyses. Methods. We describe the detection algorithm, the visual inspection, the verification process, and the redshift validation of the cluster sample, as well as the cluster selection function computed by simulations. We also present the various metadata that are released with the catalogue, along with two different count-rate measurements, an automatic one provided by the pipeline, and a more detailed and accurate interactive measurement. Furthermore, we provide the redshifts of 124 clusters obtained with a dedicated multi-object spectroscopic follow-up programme. Results. With this publication, we release the new X-CLASS catalogue of 1646 well-selected X-ray-detected clusters over a wide sky area, along with their selection function. The sample spans a wide redshift range, from the local Universe up to z ∼ 1.5, with 982 spectroscopically confirmed clusters, and over 70 clusters above z = 0.8. The redshift distribution peaks at z∼ 0.1, while if we remove the pointed observations it peaks at z ∼ 0.3. Because of its homogeneous selection and thorough verification, the cluster sample can be used for cosmological analyses, but also as a test-bed for the upcoming eROSITA observations and other current and future large-area cluster surveys. It is the first time that such a catalogue is made available to the community via an interactive database which gives access to a wealth of supplementary information, images, and data.
Aims. The main purpose of this study is to investigate aspects regarding the validity of the active galactic nucleus (AGN) unification paradigm (UP). In particular, we focus on the AGN host galaxies, which according to the UP should show no systematic differences depending on the AGN classification. Methods. For the purpose of this study, we used (a) the spectroscopic Sloan Digital Sky Survey (SDSS) Data Release 14 catalogue, in order to select and classify AGNs using emission line diagnostics, up to a redshift of z = 0.2, and (b) the Galaxy Zoo Project catalogue, which classifies SDSS galaxies in two broad Hubble types: spirals and ellipticals. Results. We find that the fraction of type 1 Seyfert nuclei (Sy1) hosted in elliptical galaxies is significantly larger than the corresponding fraction of any other AGN type, while there is a gradient of increasing spiral-hosts from Sy1 to LINER, type 2 Seyferts (Sy2) and composite nuclei. These findings cannot be interpreted within the simple unified model, but possibly by a co-evolution scheme for supermassive black holes and galactic bulges. Furthermore, for the case of spiral host galaxies we find the Sy1 population to be strongly skewed towards face-on configurations, while the corresponding Sy2 population range in all host galaxy orientation configurations has a similar, but not identical, orientation distribution to star-forming galaxies. These results also cannot be interpreted by the standard unification paradigm, but point towards a significant contribution of the galactic disc to the obscuration of the nuclear region. This is also consistent with the observed preference of Sy1 nuclei to be hosted by ellipticals, that is, the dusty disc of spiral hosts contributes to the obscuration of the broad-line region, and thus relatively more ellipticals are expected to appear hosting Sy1 nuclei.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.